BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28349162)

  • 1. Substrates of Peltigera Lichens as a Potential Source of Cyanobionts.
    Zúñiga C; Leiva D; Carú M; Orlando J
    Microb Ecol; 2017 Oct; 74(3):561-569. PubMed ID: 28349162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic Diversity of Peltigera Cyanolichens and Their Photobionts in Southern Chile and Antarctica.
    Zúñiga C; Leiva D; Ramírez-Fernández L; Carú M; Yahr R; Orlando J
    Microbes Environ; 2015; 30(2):172-9. PubMed ID: 25925273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis.
    Henskens FL; Green TG; Wilkins A
    Ann Bot; 2012 Aug; 110(3):555-63. PubMed ID: 22648879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence variation of the tRNA(Leu) intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens.
    Paulsrud P; Lindblad P
    Appl Environ Microbiol; 1998 Jan; 64(1):310-5. PubMed ID: 9435083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales).
    Magain N; Sérusiaux E
    PLoS One; 2014; 9(2):e89876. PubMed ID: 24587091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive characters of Nostoc genomes in cyanolichens.
    Gagunashvili AN; Andrésson ÓS
    BMC Genomics; 2018 Jun; 19(1):434. PubMed ID: 29866043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A case study on the re-establishment of the cyanolichen symbiosis: where do the compatible photobionts come from?
    Cardós JLH; Prieto M; Jylhä M; Aragón G; Molina MC; Martínez I; Rikkinen J
    Ann Bot; 2019 Oct; 124(3):379-388. PubMed ID: 31329832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological Specialization of Two Photobiont-Specific Maritime Cyanolichen Species of the Genus Lichina.
    Ortiz-Álvarez R; de Los Ríos A; Fernández-Mendoza F; Torralba-Burrial A; Pérez-Ortega S
    PLoS One; 2015; 10(7):e0132718. PubMed ID: 26181436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sharing of photobionts in sympatric populations of Thamnolia and Cetraria lichens: evidence from high-throughput sequencing.
    Onuț-Brännström I; Benjamin M; Scofield DG; Heiðmarsson S; Andersson MGI; Lindström ES; Johannesson H
    Sci Rep; 2018 Mar; 8(1):4406. PubMed ID: 29535321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metatranscriptomics reveals diversity of symbiotic interaction and mechanisms of carbon exchange in the marine cyanolichen Lichina pygmaea.
    Chrismas N; Tindall-Jones B; Jenkins H; Harley J; Bird K; Cunliffe M
    New Phytol; 2024 Mar; 241(5):2243-2257. PubMed ID: 37840369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae.
    Kosecka M; Guzow-Krzemińska B; Černajová I; Škaloud P; Jabłońska A; Kukwa M
    Sci Rep; 2021 Apr; 11(1):8701. PubMed ID: 33888793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes.
    Ertz D; Guzow-Krzemińska B; Thor G; Łubek A; Kukwa M
    Sci Rep; 2018 Mar; 8(1):4952. PubMed ID: 29563606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbiosis at its limits: ecophysiological consequences of lichenization in the genus Prasiola in Antarctica.
    Fernández-Marín B; López-Pozo M; Perera-Castro AV; Arzac MI; Sáenz-Ceniceros A; Colesie C; De Los Ríos A; Sancho LG; Pintado A; Laza JM; Pérez-Ortega S; García-Plazaola JI
    Ann Bot; 2020 Jan; 124(7):1211-1226. PubMed ID: 31549137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fasciclin domain proteins are present in nostoc symbionts of lichens.
    Paulsrud P; Lindblad P
    Appl Environ Microbiol; 2002 Apr; 68(4):2036-9. PubMed ID: 11916728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a cyanobacterium-binding protein and its cell wall receptor in the lichen Peltigera canina.
    Díaz EM; Sacristán M; Legaz ME; Vicente C
    Plant Signal Behav; 2009 Jul; 4(7):598-603. PubMed ID: 19820309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geographic mosaic of symbiont selectivity in a genus of epiphytic cyanolichens.
    Fedrowitz K; Kaasalainen U; Rikkinen J
    Ecol Evol; 2012 Sep; 2(9):2291-303. PubMed ID: 23139887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont-photobiont interactions.
    Beck A; Mayr C
    Ecol Evol; 2012 Dec; 2(12):3132-44. PubMed ID: 23301178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine cyanolichens from different littoral zones are associated with distinct bacterial communities.
    West NJ; Parrot D; Fayet C; Grube M; Tomasi S; Suzuki MT
    PeerJ; 2018; 6():e5208. PubMed ID: 30038864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symbiosis constraints: Strong mycobiont control limits nutrient response in lichens.
    Palmqvist K; Franklin O; Näsholm T
    Ecol Evol; 2017 Sep; 7(18):7420-7433. PubMed ID: 28944027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lichens as natural sources of biotechnologically relevant bacteria.
    Suzuki MT; Parrot D; Berg G; Grube M; Tomasi S
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):583-95. PubMed ID: 26549239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.