BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28349168)

  • 1. Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay.
    Clancy E; Burke M; Arabkari V; Barry T; Kelly H; Dwyer RM; Kerin MJ; Smith TJ
    Anal Bioanal Chem; 2017 May; 409(14):3497-3505. PubMed ID: 28349168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and Quantification of MicroRNAs by Ligase-Assisted Sandwich Hybridization on a Microarray.
    Iizuka R; Ueno T; Funatsu T
    Methods Mol Biol; 2016; 1368():53-65. PubMed ID: 26614068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals.
    Li J; Schachermeyer S; Wang Y; Yin Y; Zhong W
    Anal Chem; 2009 Dec; 81(23):9723-9. PubMed ID: 19831385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization kinetics analysis of an oligonucleotide microarray for microRNA detection.
    Zhao B; Ding S; Li W; Jin Y
    Acta Biochim Biophys Sin (Shanghai); 2011 Jul; 43(7):551-5. PubMed ID: 21632556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization.
    Arata H; Komatsu H; Han A; Hosokawa K; Maeda M
    Analyst; 2012 Jul; 137(14):3234-7. PubMed ID: 22614070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21.
    Zhang J; Zhao Q; Wu Y; Zhang B; Peng W; Piao J; Zhou Y; Gao W; Gong X; Chang J
    Biosens Bioelectron; 2017 Nov; 97():26-33. PubMed ID: 28549267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy.
    Chan HM; Chan LS; Wong RN; Li HW
    Anal Chem; 2010 Aug; 82(16):6911-8. PubMed ID: 20704380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybridization-initiated exonuclease resistance strategy for simultaneous detection of multiple microRNAs.
    Sun Y; Wang Y; Lau C; Chen G; Lu J
    Talanta; 2018 Dec; 190():248-254. PubMed ID: 30172506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.
    Liu Y; Zhang J; Tian J; Fan X; Geng H; Cheng Y
    Anal Bioanal Chem; 2017 Jan; 409(1):107-114. PubMed ID: 27815611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor.
    Zhang Y; Zhang CY
    Anal Chem; 2012 Jan; 84(1):224-31. PubMed ID: 22103863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.
    Goldman JM; Zhang LA; Manna A; Armitage BA; Ly DH; Schneider JW
    Biomacromolecules; 2013 Jul; 14(7):2253-61. PubMed ID: 23777445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated closed-tube 2-plex PCR amplification and hybridization assay with switchable lanthanide luminescence based spatial detection.
    Lahdenperä S; Spangar A; Lempainen AM; Joki L; Soukka T
    Analyst; 2015 Jun; 140(12):3960-8. PubMed ID: 25882638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes.
    Marras SA; Tyagi S; Kramer FR
    Clin Chim Acta; 2006 Jan; 363(1-2):48-60. PubMed ID: 16111667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a base stacking hybridization-based microarray method for rapid identification of clinical isolates.
    Zhu LX; Wang D; Zhang GB; Jiang D; Zhang ZW; Zhang Q; Mitchelson K; Cheng J
    Diagn Microbiol Infect Dis; 2007 Oct; 59(2):149-56. PubMed ID: 17662562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly improved specificity for hybridization-based microRNA detection by controlled surface dissociation.
    Yoon HR; Lee JM; Jung J; Lee CS; Chung BH; Jung Y
    Analyst; 2014 Jan; 139(1):259-65. PubMed ID: 24205510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes.
    Castoldi M; Schmidt S; Benes V; Hentze MW; Muckenthaler MU
    Nat Protoc; 2008; 3(2):321-9. PubMed ID: 18274534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bivalent Display of Dicysteine on Peptide Nucleic Acids for Homogenous DNA/RNA Detection through in Situ Fluorescence Labelling.
    Fang GM; Seitz O
    Chembiochem; 2017 Jan; 18(2):189-194. PubMed ID: 27883258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.
    Girard LD; Boissinot K; Peytavi R; Boissinot M; Bergeron MG
    Analyst; 2015 Feb; 140(3):912-21. PubMed ID: 25489607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical detection of microRNAs via gap hybridization assay.
    Pöhlmann C; Sprinzl M
    Anal Chem; 2010 Jun; 82(11):4434-40. PubMed ID: 20433153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA detection using lateral flow nucleic acid strips with gold nanoparticles.
    Hou SY; Hsiao YL; Lin MS; Yen CC; Chang CS
    Talanta; 2012 Sep; 99():375-9. PubMed ID: 22967567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.