These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28349366)

  • 1. The Inversion Effect for Chinese Characters is Modulated by Radical Organization.
    Luo C; Chen W; Zhang Y
    J Psycholinguist Res; 2017 Jun; 46(3):791-803. PubMed ID: 28349366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid implicit extraction of abstract orthographic patterns of Chinese characters during reading.
    Zhang X; Yang S; Jiang M
    PLoS One; 2020; 15(2):e0229590. PubMed ID: 32084247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERPs reveal sub-lexical processing in Chinese character recognition.
    Wu Y; Mo D; Tsang YK; Chen HC
    Neurosci Lett; 2012 Apr; 514(2):164-8. PubMed ID: 22401826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chinese characters elicit face-like N170 inversion effects.
    Wang MY; Kuo BC; Cheng SK
    Brain Cogn; 2011 Dec; 77(3):419-31. PubMed ID: 21944865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing Chinese Characters in Peripheral Vision: Different Levels of Processing of Character.
    Feng M; Sun D; Zhang Y
    J Psycholinguist Res; 2021 Apr; 50(2):275-291. PubMed ID: 33044740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N2- and N400-like effects of radicals on complex Chinese characters.
    Wang Q; Dong Y
    Neurosci Lett; 2013 Aug; 548():301-5. PubMed ID: 23769727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual Similarity of Words Alone Can Modulate Hemispheric Lateralization in Visual Word Recognition: Evidence From Modeling Chinese Character Recognition.
    Hsiao JH; Cheung K
    Cogn Sci; 2016 Mar; 40(2):351-72. PubMed ID: 25818722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of brain mechanisms underlying the processing of Chinese characters and pseudo-characters: an event-related potential study.
    Wang T; Li H; Zhang Q; Tu S; Yu C; Qiu J
    Int J Psychol; 2010 Apr; 45(2):102-10. PubMed ID: 22043890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical coding of characters in the ventral and dorsal visual streams of Chinese language processing.
    Chan ST; Tang SW; Tang KW; Lee WK; Lo SS; Kwong KK
    Neuroimage; 2009 Nov; 48(2):423-35. PubMed ID: 19591947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of stimulus inversion on the neural representations of Chinese character and face recognition.
    Li CH; Wang MY; Kuo BC
    Neuropsychologia; 2022 Jan; 164():108090. PubMed ID: 34801520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking the temporal dynamics of the face-like inversion effect as revealed by Chinese characters using magnetoencephalography.
    Li CH; Wang MY; Kuo BC
    Cereb Cortex; 2023 Jun; 33(13):8496-8509. PubMed ID: 37092186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inversion effect in the visual processing of Chinese character: an fMRI study.
    Zhao J; Liu J; Li J; Liang J; Feng L; Ai L; Tian J
    Neurosci Lett; 2010 Jul; 478(2):107-11. PubMed ID: 20452399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity to configural information and expertise in visual word recognition.
    Wong AC; Wong YK; Lui KFH; Ng TYK; Ngan VSH
    J Exp Psychol Hum Percept Perform; 2019 Jan; 45(1):82-99. PubMed ID: 30596434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of top-down category-level expectation and bottom-up sensory input in early stages of visual-orthographic processing.
    Wang F; Maurer U
    Neuropsychologia; 2020 Feb; 137():107299. PubMed ID: 31821829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological evidence of sublexical phonological access in character processing by L2 Chinese learners of L1 alphabetic scripts.
    Yum YN; Law SP; Mo KN; Lau D; Su IF; Shum MS
    Cogn Affect Behav Neurosci; 2016 Apr; 16(2):339-52. PubMed ID: 26620688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of a Chinese pseudo-character/non-character producing system.
    Chang LY; Tseng CC; Perfetti CA; Chen HC
    Behav Res Methods; 2022 Apr; 54(2):632-648. PubMed ID: 34338992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The time-course of lexical activation in Japanese morphographic word recognition: evidence for a character-driven processing model.
    Miwa K; Libben G; Dijkstra T; Baayen H
    Q J Exp Psychol (Hove); 2014; 67(1):79-113. PubMed ID: 23713954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holistic versus analytic processing: evidence for a different approach to processing of Chinese at the word and character levels in Chinese children.
    Liu PD; Chung KK; McBride-Chang C; Tong X
    J Exp Child Psychol; 2010 Dec; 107(4):466-78. PubMed ID: 20673579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural basis of hierarchical visual form processing of Japanese Kanji characters.
    Higuchi H; Moriguchi Y; Murakami H; Katsunuma R; Mishima K; Uno A
    Brain Behav; 2015 Dec; 5(12):e00413. PubMed ID: 26807339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of numbers of strokes on Chinese character recognition during a normal reading condition.
    Huang KC; Hsu SH
    Percept Mot Skills; 2005 Dec; 101(3):845-52. PubMed ID: 16491688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.