BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 28349610)

  • 1. One Versatile Route to Three-Dimensional Graphene Wrapped Metal Cyanide Aerogels for Enhanced Sodium Ion Storage.
    Bu F; Feng X; Jiang T; Shakir I; Xu Y
    Chemistry; 2017 Jun; 23(35):8358-8363. PubMed ID: 28349610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Fe
    Jiang T; Bu F; Feng X; Shakir I; Hao G; Xu Y
    ACS Nano; 2017 May; 11(5):5140-5147. PubMed ID: 28457124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors.
    Song WL; Song K; Fan LZ
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4257-64. PubMed ID: 25654650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D graphene supported MoO2 for high performance binder-free lithium ion battery.
    Huang ZX; Wang Y; Zhu YG; Shi Y; Wong JI; Yang HY
    Nanoscale; 2014 Aug; 6(16):9839-45. PubMed ID: 25028917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries.
    Xie X; Chen S; Sun B; Wang C; Wang G
    ChemSusChem; 2015 Sep; 8(17):2948-55. PubMed ID: 26079600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity.
    Jiang L; Lin B; Li X; Song X; Xia H; Li L; Zeng H
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2680-7. PubMed ID: 26761564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries.
    Wang W; Gang Y; Hu Z; Yan Z; Li W; Li Y; Gu QF; Wang Z; Chou SL; Liu HK; Dou SX
    Nat Commun; 2020 Feb; 11(1):980. PubMed ID: 32080172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional graphene-based composites for energy applications.
    Mao S; Lu G; Chen J
    Nanoscale; 2015 Apr; 7(16):6924-43. PubMed ID: 25585233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Anchoring Approach for Growth of CeO
    Wang K; Zhang F; Zhu G; Zhang H; Zhao Y; She L; Yang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33082-33090. PubMed ID: 31418549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile preparation of one-dimensional wrapping structure: graphene nanoscroll-wrapped of Fe3O4 nanoparticles and its application for lithium-ion battery.
    Zhao J; Yang B; Zheng Z; Yang J; Yang Z; Zhang P; Ren W; Yan X
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9890-6. PubMed ID: 24826777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries.
    Hou Y; Li J; Gao X; Wen Z; Yuan C; Chen J
    Nanoscale; 2016 Apr; 8(15):8228-35. PubMed ID: 27029963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries.
    Deng W; Qian J; Cao Y; Ai X; Yang H
    Small; 2016 Feb; 12(5):583-7. PubMed ID: 26670409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries.
    Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prussian blues as a cathode material for lithium ion batteries.
    Shen L; Wang Z; Chen L
    Chemistry; 2014 Sep; 20(39):12559-62. PubMed ID: 25111752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability.
    Wang R; Xu C; Du M; Sun J; Gao L; Zhang P; Yao H; Lin C
    Small; 2014 Jun; 10(11):2260-9. PubMed ID: 24678007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries.
    Tang X; Jan SS; Qian Y; Xia H; Ni J; Savilov SV; Aldoshin SM
    Sci Rep; 2015 Jul; 5():11958. PubMed ID: 26148558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation.
    Wang H; Yuan X; Zeng G; Wu Y; Liu Y; Jiang Q; Gu S
    Adv Colloid Interface Sci; 2015 Jul; 221():41-59. PubMed ID: 25983012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D graphene current collector boosts ultrahigh specific capacity in a highly uniform Prussian blue@graphene composite as a freestanding cathode for sodium ion batteries.
    Chu H; Pei Y; Cui Z; Steven C; Dong P; Ajayan PM; Ye M; Shen J
    Nanoscale; 2018 Aug; 10(30):14697-14704. PubMed ID: 30039827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.