These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28349767)

  • 1. Finite element analyses for improved design of peripheral stents.
    Lim YH; Jeong HY
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):653-662. PubMed ID: 28349767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated Bench Testing to Evaluate the Mechanical Performance of New Carotid Stents.
    Kumar GP; Kabinejadian F; Liu J; Ho P; Leo HL; Cui F
    Artif Organs; 2017 Mar; 41(3):267-272. PubMed ID: 27357068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes].
    Wang T; Feng H; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):303-309. PubMed ID: 33913290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Finite element analysis for compression and expansion behavior of magnesium stent].
    Chen H; Liu X; Yuan G; Zhang L; Li Z; Luo Q; Lin F
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 May; 38(3):161-4, 176. PubMed ID: 25241506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis.
    Wu W; Qi M; Liu XP; Yang DZ; Wang WQ
    J Biomech; 2007; 40(13):3034-40. PubMed ID: 17511995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis for fatigue behaviour of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions.
    Lei L; Qi X; Li S; Yang Y; Hu Y; Li B; Zhao S; Zhang Y
    Comput Biol Med; 2019 Jan; 104():205-214. PubMed ID: 30529572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Optimization based on finite element technique of nitinol stent].
    Lin F; Liu X; Huang N; Gao Q; Li Z; Yao T; Luo Q; Huang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 Mar; 38(2):98-101. PubMed ID: 24941770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of NiTi self-expandable heart valve stent.
    Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation.
    Li Y; Wang Y; Shen Z; Miao F; Wang J; Sun Y; Zhu S; Zheng Y; Guan S
    Acta Biomater; 2022 Apr; 142():402-412. PubMed ID: 35085798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses and design of expansion mechanisms of balloon expandable vascular stents.
    Douglas GR; Phani AS; Gagnon J
    J Biomech; 2014 Apr; 47(6):1438-46. PubMed ID: 24548335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analyses for optimization design of biodegradable magnesium alloy stent.
    Li J; Zheng F; Qiu X; Wan P; Tan L; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():705-14. PubMed ID: 25063172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination effect of two different NiTi stents on the vessel wall and studying their flexibility using finite element method.
    Salemizadehparizi F; Mehrabi R
    Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1520-1530. PubMed ID: 34967243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical design of an intracranial stent for treating cerebral aneurysms.
    Shobayashi Y; Tanoue T; Tateshima S; Tanishita K
    Med Eng Phys; 2010 Nov; 32(9):1015-24. PubMed ID: 20675176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological and stent design risk factors to prevent migration phenomena for a thoracic aneurysm: a numerical analysis.
    Altnji HE; Bou-Saïd B; Walter-Le Berre H
    Med Eng Phys; 2015 Jan; 37(1):23-33. PubMed ID: 25456396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on the coupling expansion deformation behavior of coronary stainless steel stent in vitro].
    Wang W; Feng H; Wang X; Chen Y; Zhang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Oct; 30(5):1027-32, 1062. PubMed ID: 24459965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing flexibility and strength-to-weight ratio of polymeric stents: A new variable-thickness design approach.
    Khatami M; Doniavi A; Abazari AM; Fotouhi M
    J Mech Behav Biomed Mater; 2024 Feb; 150():106262. PubMed ID: 38029464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility.
    Kim DB; Choi H; Joo SM; Kim HK; Shin JH; Hwang MH; Choi J; Kim DG; Lee KH; Lim CH; Yoo SK; Lee HM; Sun K
    Artif Organs; 2013 Apr; 37(4):368-79. PubMed ID: 23461583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.