These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28349768)

  • 1. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation.
    Mun KR; Lim SB; Guo Z; Yu H
    Med Biol Eng Comput; 2017 Feb; 55(2):315-326. PubMed ID: 27193227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training.
    Galen SS; Clarke CJ; McLean AN; Allan DB; Conway BA
    NeuroRehabilitation; 2014; 34(2):287-95. PubMed ID: 24419018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Ankle Joint Motion on Pelvis-Hip Biomechanics and Muscle Activity Patterns of Healthy Individuals in Knee Immobilization Gait.
    Guan X; Kuai S; Song L; Liu W; Liu Y; Ji L; Wang R
    J Healthc Eng; 2019; 2019():3812407. PubMed ID: 31737239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern.
    Neckel ND; Blonien N; Nichols D; Hidler J
    J Neuroeng Rehabil; 2008 Sep; 5():19. PubMed ID: 18761735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of human gait with body weight support: benchmarking models and unloading strategies.
    Apte S; Plooij M; Vallery H
    J Neuroeng Rehabil; 2020 Jun; 17(1):81. PubMed ID: 32586398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.
    Arch ES; Stanhope SJ; Higginson JS
    Prosthet Orthot Int; 2016 Oct; 40(5):606-16. PubMed ID: 26209424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics.
    Gross R; Leboeuf F; Hardouin JB; Perrouin-Verbe B; Brochard S; Rémy-Néris O
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1088-93. PubMed ID: 26377949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle force redistributes segmental power for body progression during walking.
    Neptune RR; Zajac FE; Kautz SA
    Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.
    Mat Dzahir MA; Nobutomo T; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6417-20. PubMed ID: 24111210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle activation during body weight-supported locomotion while using the ZeroG.
    Fenuta AM; Hicks AL
    J Rehabil Res Dev; 2014; 51(1):51-8. PubMed ID: 24805893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torque action of two-joint muscles in the swing period of stiff-legged gait: a forward dynamic model analysis.
    Riley PO; Kerrigan DC
    J Biomech; 1998 Sep; 31(9):835-40. PubMed ID: 9802784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of stride frequency manipulation on muscle activity during running with body weight support.
    Masumoto K; Joerger J; Mercer JA
    Gait Posture; 2018 Mar; 61():473-478. PubMed ID: 29494820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle contributions to support and progression over a range of walking speeds.
    Liu MQ; Anderson FC; Schwartz MH; Delp SL
    J Biomech; 2008 Nov; 41(15):3243-52. PubMed ID: 18822415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait.
    Arnold AS; Anderson FC; Pandy MG; Delp SL
    J Biomech; 2005 Nov; 38(11):2181-9. PubMed ID: 16154404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.