These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28349896)

  • 21. Deep learning model inspired by lateral line system for underwater object detection.
    Jeong T; Yoo J; Kim D
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34847542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal Sensor Placement of the Artificial Lateral Line for Flow Parametric Identification.
    Xu D; Zhang Y; Tian J; Fan H; Xie Y; Dai W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional multi-source localization of underwater objects using convolutional neural networks for artificial lateral lines.
    Wolf BJ; van de Wolfshaar J; van Netten SM
    J R Soc Interface; 2020 Jan; 17(162):20190616. PubMed ID: 31964270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model of the lateral line of fish for vortex sensing.
    Ren Z; Mohseni K
    Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing.
    Kottapalli AG; Bora M; Asadnia M; Miao J; Venkatraman SS; Triantafyllou M
    Sci Rep; 2016 Jan; 6():19336. PubMed ID: 26763299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Quadrature Method: A Novel Dipole Localisation Algorithm for Artificial Lateral Lines Compared to State of the Art.
    Bot DM; Wolf BJ; van Netten SM
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
    Shen Q; Wang T; Kim KJ
    Bioinspir Biomim; 2015 Sep; 10(5):055007. PubMed ID: 26414228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crocodile-inspired dome-shaped pressure receptors for passive hydrodynamic sensing.
    Kanhere E; Wang N; Kottapalli AG; Asadnia M; Subramaniam V; Miao J; Triantafyllou M
    Bioinspir Biomim; 2016 Aug; 11(5):056007. PubMed ID: 27545614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.
    Schwalbe MA; Sevey BJ; Webb JF
    J Exp Biol; 2016 Apr; 219(Pt 7):1050-9. PubMed ID: 27030780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.
    Asadnia M; Kottapalli AG; Haghighi R; Cloitre A; Alvarado PV; Miao J; Triantafyllou M
    Bioinspir Biomim; 2015 May; 10(3):036008. PubMed ID: 25984934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance of neural networks for localizing moving objects with an artificial lateral line.
    Boulogne LH; Wolf BJ; Wiering MA; van Netten SM
    Bioinspir Biomim; 2017 Sep; 12(5):056009. PubMed ID: 28707626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards a high-resolution flow camera using artificial hair sensor arrays for flow pattern observations.
    Dagamseh AM; Wiegerink RJ; Lammerink TS; Krijnen GJ
    Bioinspir Biomim; 2012 Dec; 7(4):046009. PubMed ID: 22954888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.
    Kottapalli AGP; Bora M; Kanhere E; Asadnia M; Miao J; Triantafyllou MS
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28788059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensing the flow beneath the fins.
    Bora M; Kottapalli AGP; Miao J; Triantafyllou MS
    Bioinspir Biomim; 2018 Jan; 13(2):025002. PubMed ID: 29239859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Form-function relationship in artificial lateral lines.
    Kaldenbach F; Klein A; Bleckmann H
    Bioinspir Biomim; 2019 Jan; 14(2):026001. PubMed ID: 30608055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Training bioinspired sensors to classify flows.
    Alsalman M; Colvert B; Kanso E
    Bioinspir Biomim; 2018 Nov; 14(1):016009. PubMed ID: 30479313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recurrent neural networks for hydrodynamic imaging using a 2D-sensitive artificial lateral line.
    Wolf BJ; Warmelink S; van Netten SM
    Bioinspir Biomim; 2019 Jul; 14(5):055001. PubMed ID: 31239415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-motion effects on hydrodynamic pressure sensing: part I. forward-backward motion.
    Akanyeti O; Chambers LD; Ježov J; Brown J; Venturelli R; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2013 Jun; 8(2):026001. PubMed ID: 23462257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an artificial sensor for hydrodynamic detection inspired by a seal's whisker array.
    Eberhardt WC; Wakefield BF; Murphy CT; Casey C; Shakhsheer Y; Calhoun BH; Reichmuth C
    Bioinspir Biomim; 2016 Aug; 11(5):056011. PubMed ID: 27580063
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.