BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 28349970)

  • 1. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study.
    Gupta R; Rai B
    Sci Rep; 2017 Mar; 7():45292. PubMed ID: 28349970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetration of Gold Nanoparticles through Human Skin: Unraveling Its Mechanisms at the Molecular Scale.
    Gupta R; Rai B
    J Phys Chem B; 2016 Jul; 120(29):7133-42. PubMed ID: 27362257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers.
    Lolicato F; Joly L; Martinez-Seara H; Fragneto G; Scoppola E; Baldelli Bombelli F; Vattulainen I; Akola J; Maccarini M
    Small; 2019 Jun; 15(23):e1805046. PubMed ID: 31012268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles.
    Shen Z; Baker W; Ye H; Li Y
    Nanoscale; 2019 Apr; 11(15):7371-7385. PubMed ID: 30938720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transdermal cellular membrane penetration of proteins with gold nanoparticles: a molecular dynamics study.
    Gupta R; Kashyap N; Rai B
    Phys Chem Chem Phys; 2017 Mar; 19(11):7537-7545. PubMed ID: 28252121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J; Zhang H; Chen Z; Zheng Y
    ACS Nano; 2010 Sep; 4(9):5421-9. PubMed ID: 20799717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles.
    Quan X; Zhao D; Zhou J
    Phys Chem Chem Phys; 2021 Oct; 23(41):23526-23536. PubMed ID: 34642720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free Energy of Bare and Capped Gold Nanoparticles Permeating through a Lipid Bilayer.
    Mhashal AR; Roy S
    Chemphyschem; 2016 Nov; 17(21):3504-3514. PubMed ID: 27595236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of functionalized gold nanoparticles on floating lipid bilayers.
    Tatur S; Maccarini M; Barker R; Nelson A; Fragneto G
    Langmuir; 2013 Jun; 29(22):6606-14. PubMed ID: 23638939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.
    Gao J; Zhang O; Ren J; Wu C; Zhao Y
    Langmuir; 2016 Feb; 32(6):1601-10. PubMed ID: 26794292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of concentration of PEG coated gold nanoparticle on lung surfactant studied with coarse-grained molecular dynamics simulations.
    Jiao F; Sang J; Liu Z; Liu W; Liang W
    Biophys Chem; 2020 Nov; 266():106457. PubMed ID: 32890945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy change for insertion of charged, monolayer-protected nanoparticles into lipid bilayers.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2014 Jan; 10(4):648-58. PubMed ID: 24795979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function.
    Foreman-Ortiz IU; Liang D; Laudadio ED; Calderin JD; Wu M; Keshri P; Zhang X; Schwartz MP; Hamers RJ; Rotello VM; Murphy CJ; Cui Q; Pedersen JA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27854-27861. PubMed ID: 33106430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes.
    Melby ES; Lohse SE; Park JE; Vartanian AM; Putans RA; Abbott HB; Hamers RJ; Murphy CJ; Pedersen JA
    ACS Nano; 2017 Jun; 11(6):5489-5499. PubMed ID: 28482159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation study on gold nanoparticle-cellular membrane complex in endocytosis process.
    Zheng F; Pan J; Yin X; Li J; Wang F; Zhao L
    J Nanosci Nanotechnol; 2013 Jun; 13(6):3990-8. PubMed ID: 23862438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Surface Functionalization on Cellular Uptake of AuNPs Characterized by Computational Microscopy.
    Lunnoo T; Assawakhajornsak J; Ruangchai S; Puangmali T
    J Phys Chem B; 2020 Mar; 124(10):1898-1908. PubMed ID: 32040917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge.
    Chen X; Tieleman DP; Liang Q
    Nanoscale; 2018 Feb; 10(5):2481-2491. PubMed ID: 29340405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.