These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28349985)

  • 21. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.
    Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dependent Relationship between Quantitative Lattice Contraction and Enhanced Oxygen Reduction Activity over Pt-Cu Alloy Catalysts.
    Zhao Y; Wu Y; Liu J; Wang F
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35740-35748. PubMed ID: 28976727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires.
    Jiang K; Zhao D; Guo S; Zhang X; Zhu X; Guo J; Lu G; Huang X
    Sci Adv; 2017 Feb; 3(2):e1601705. PubMed ID: 28275723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors controlling the energetics of the oxygen reduction reaction on the Pd-Co electro-catalysts: insight from first principles.
    Zuluaga S; Stolbov S
    J Chem Phys; 2011 Oct; 135(13):134702. PubMed ID: 21992330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon-supported Pt^Ag nanostructures as cathode catalysts for oxygen reduction reaction.
    Feng YY; Zhang GR; Ma JH; Liu G; Xu BQ
    Phys Chem Chem Phys; 2011 Mar; 13(9):3863-72. PubMed ID: 21210027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoporous Platinum/(Mn,Al)
    Si C; Zhang J; Wang Y; Ma W; Gao H; Lv L; Zhang Z
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2485-2494. PubMed ID: 28054484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design.
    Wei GF; Liu ZP
    Phys Chem Chem Phys; 2013 Nov; 15(42):18555-61. PubMed ID: 24077215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis.
    Carpenter MK; Moylan TE; Kukreja RS; Atwan MH; Tessema MM
    J Am Chem Soc; 2012 May; 134(20):8535-42. PubMed ID: 22524269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability.
    Cui R; Mei L; Han G; Chen J; Zhang G; Quan Y; Gu N; Zhang L; Fang Y; Qian B; Jiang X; Han Z
    Sci Rep; 2017 Feb; 7():41826. PubMed ID: 28150732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The segregation resistance of the Pt
    Xiao BB; Jiang XB; Yang XL; Jiang Q; Zheng F
    Phys Chem Chem Phys; 2016 Nov; 18(43):30174-30182. PubMed ID: 27779259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pt-Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst.
    Ghosh S; Sahu RK; Raj CR
    Nanotechnology; 2012 Sep; 23(38):385602. PubMed ID: 22948751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques.
    Nagasawa K; Takao S; Higashi K; Nagamatsu S; Samjeské G; Imaizumi Y; Sekizawa O; Yamamoto T; Uruga T; Iwasawa Y
    Phys Chem Chem Phys; 2014 Jun; 16(21):10075-87. PubMed ID: 24513596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface.
    Kattel S; Wang G
    J Chem Phys; 2014 Sep; 141(12):124713. PubMed ID: 25273467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen-doped graphene anchored with mixed growth patterns of CuPt alloy nanoparticles as a highly efficient and durable electrocatalyst for the oxygen reduction reaction in an alkaline medium.
    Illathvalappil R; Dhavale VM; Bhange SN; Kurungot S
    Nanoscale; 2017 Jul; 9(26):9009-9017. PubMed ID: 28639678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of Chemically Ordered Pt
    Jung C; Lee C; Bang K; Lim J; Lee H; Ryu HJ; Cho E; Lee HM
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31806-31815. PubMed ID: 28849644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reducing the Cost and Preserving the Reactivity in Noble-Metal-Based Catalysts: Oxidation of CO by Pt and Al-Pt Alloy Clusters Supported on Graphene.
    Koizumi K; Nobusada K; Boero M
    Chemistry; 2016 Apr; 22(15):5181-8. PubMed ID: 26878836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pt@Au nanorods uniformly decorated on pyridyne cycloaddition graphene as a highly effective electrocatalyst for oxygen reduction.
    Zhong X; Yu H; Wang X; Liu L; Jiang Y; Wang L; Zhuang G; Chu Y; Li X; Wang JG
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13448-54. PubMed ID: 25102156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. L-Phenylalanine-Templated Platinum Catalyst with Enhanced Performance for Oxygen Reduction Reaction.
    Wang J; Kattel S; Wang Z; Chen JG; Liu CJ
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21321-21327. PubMed ID: 29856210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity.
    Singh RK; Rahul R; Neergat M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13044-51. PubMed ID: 23817297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.