BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28349991)

  • 61. Mixed-ligand ruthenium polypyridyl complexes as apoptosis inducers in cancer cells, the cellular translocation and the important role of ROS-mediated signaling.
    Zhao Z; Luo Z; Wu Q; Zheng W; Feng Y; Chen T
    Dalton Trans; 2014 Dec; 43(45):17017-28. PubMed ID: 25087850
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rhodium, iridium, and ruthenium half-sandwich picolinamide complexes as anticancer agents.
    Almodares Z; Lucas SJ; Crossley BD; Basri AM; Pask CM; Hebden AJ; Phillips RM; McGowan PC
    Inorg Chem; 2014 Jan; 53(2):727-36. PubMed ID: 24397747
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Half-Sandwich Iridium and Ruthenium Complexes: Effective Tracking in Cells and Anticancer Studies.
    Li J; Guo L; Tian Z; Zhang S; Xu Z; Han Y; Li R; Li Y; Liu Z
    Inorg Chem; 2018 Nov; 57(21):13552-13563. PubMed ID: 30289251
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The induction of apoptosis in HepG-2 cells by ruthenium(II) complexes through an intrinsic ROS-mediated mitochondrial dysfunction pathway.
    Zeng CC; Lai SH; Yao JH; Zhang C; Yin H; Li W; Han BJ; Liu YJ
    Eur J Med Chem; 2016 Oct; 122():118-126. PubMed ID: 27344489
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Subcellular localization and transport kinetics of ruthenium organometallic anticancer compounds in living cells: a dose-dependent role for amino acid and iron transporters.
    Klajner M; Licona C; Fetzer L; Hebraud P; Mellitzer G; Pfeffer M; Harlepp S; Gaiddon C
    Inorg Chem; 2014 May; 53(10):5150-8. PubMed ID: 24786362
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem.
    Ferraro MG; Bocchetti M; Riccardi C; Trifuoggi M; Paduano L; Montesarchio D; Misso G; Santamaria R; Piccolo M; Irace C
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047448
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synthesis of novel anticancer ruthenium-arene pyridinylmethylene scaffolds via three-component reaction.
    Jadhav GR; Sinha S; Chhabra M; Paira P
    Bioorg Med Chem Lett; 2016 Jun; 26(11):2695-700. PubMed ID: 27090558
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multi-targeted organometallic ruthenium(II)-arene anticancer complexes bearing inhibitors of poly(ADP-ribose) polymerase-1: A strategy to improve cytotoxicity.
    Wang Z; Qian H; Yiu SM; Sun J; Zhu G
    J Inorg Biochem; 2014 Feb; 131():47-55. PubMed ID: 24239912
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Antiangiogenic and Anticancer Properties of Bifunctional Ruthenium(II)-p-Cymene Complexes: Influence of Pendant Perfluorous Chains.
    Nowak-Sliwinska P; Clavel CM; Păunescu E; te Winkel MT; Griffioen AW; Dyson PJ
    Mol Pharm; 2015 Aug; 12(8):3089-96. PubMed ID: 26158308
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Organometallic ruthenium and osmium compounds of pyridin-2- and -4-ones as potential anticancer agents.
    Henke H; Kandioller W; Hanif M; Keppler BK; Hartinger CG
    Chem Biodivers; 2012 Sep; 9(9):1718-27. PubMed ID: 22976964
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ruthenium(ii) p-cymene complexes of a benzimidazole-based ligand capable of VEGFR2 inhibition: hydrolysis, reactivity and cytotoxicity studies.
    Bhattacharyya S; Purkait K; Mukherjee A
    Dalton Trans; 2017 Jul; 46(26):8539-8554. PubMed ID: 28638907
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cytotoxicity, apoptosis, cellular uptake, cell cycle distribution, and DNA-binding investigation of ruthenium complexes.
    Guo QF; Liu SH; Liu QH; Xu HH; Zhao JH; Wu HF; Li XY; Wang JW
    DNA Cell Biol; 2012 Jul; 31(7):1205-13. PubMed ID: 22424392
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluation of anticancer role of a novel ruthenium(II)-based compound compared with NAMI-A and cisplatin in impairing mitochondrial functionality and promoting oxidative stress in triple negative breast cancer models.
    Silvestri S; Cirilli I; Marcheggiani F; Dludla P; Lupidi G; Pettinari R; Marchetti F; Di Nicola C; Falcioni G; Marchini C; Orlando P; Tiano L; Amici A
    Mitochondrion; 2021 Jan; 56():25-34. PubMed ID: 33220497
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparative antitumor studies of organoruthenium complexes with 8-hydroxyquinolines on 2D and 3D cell models of bone, lung and breast cancer.
    Ruiz MC; Kljun J; Turel I; Di Virgilio AL; León IE
    Metallomics; 2019 Mar; 11(3):666-675. PubMed ID: 30839008
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Histone-deacetylase-targeted fluorescent ruthenium(II) polypyridyl complexes as potent anticancer agents.
    Ye RR; Ke ZF; Tan CP; He L; Ji LN; Mao ZW
    Chemistry; 2013 Jul; 19(31):10160-9. PubMed ID: 23828334
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Discovery of a strongly apoptotic ruthenium complex through combinatorial coordination chemistry.
    Mulcahy SP; Gründler K; Frias C; Wagner L; Prokop A; Meggers E
    Dalton Trans; 2010 Sep; 39(35):8177-82. PubMed ID: 20689887
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Review of Ruthenium Complexes Activities on Breast Cancer Cells.
    Popolin CP; Cominetti MR
    Mini Rev Med Chem; 2017; 17(15):1435-1441. PubMed ID: 28176627
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis, characterization, DNA binding studies, photocleavage, cytotoxicity and docking studies of ruthenium(II) light switch complexes.
    Gabra NM; Mustafa B; Kumar YP; Devi CS; Srishailam A; Reddy PV; Reddy KL; Satyanarayana S
    J Fluoresc; 2014 Jan; 24(1):169-81. PubMed ID: 23982735
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Disruption of the Microtubule Network and Inhibition of VEGFR2 Phosphorylation by Cytotoxic
    Acharya S; Maji M; Chakraborty MP; Bhattacharya I; Das R; Gupta A; Mukherjee A
    Inorg Chem; 2021 Mar; 60(5):3418-3430. PubMed ID: 33554592
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ruthenium dendrimers against acute promyelocytic leukemia: 
    Michlewska S; Ionov M; Maroto-Díaz M; Szwed A; Ihnatsyeu-Kachan A; Abashkin V; Dzmitruk V; Rogalska A; Denel M; Gapinska M; Shcharbin D; Gomez Ramirez R; de la Mata FJ; Bryszewska M
    Future Med Chem; 2019 Jul; 11(14):1741-1756. PubMed ID: 31287722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.