These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28350156)

  • 1. One-Pot Sintering Strategy for Efficient Fabrication of High-Performance and Multifunctional Graphene Foams.
    Li Y; Zhang HB; Zhang L; Shen B; Zhai W; Yu ZZ; Zheng W
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13323-13330. PubMed ID: 28350156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Printed Graphene Foams.
    Sha J; Li Y; Villegas Salvatierra R; Wang T; Dong P; Ji Y; Lee SK; Zhang C; Zhang J; Smith RH; Ajayan PM; Lou J; Zhao N; Tour JM
    ACS Nano; 2017 Jul; 11(7):6860-6867. PubMed ID: 28608675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams.
    Shen Z; Ye H; Zhou C; Kröger M; Li Y
    Nanotechnology; 2018 Mar; 29(10):104001. PubMed ID: 29311421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition.
    Chen Z; Ren W; Gao L; Liu B; Pei S; Cheng HM
    Nat Mater; 2011 Jun; 10(6):424-8. PubMed ID: 21478883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery.
    Zhu H; Chen D; An W; Li N; Xu Q; Li H; He J; Lu J
    Small; 2015 Oct; 11(39):5222-9. PubMed ID: 26265103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding.
    Shen B; Li Y; Zhai W; Zheng W
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8050-7. PubMed ID: 26974443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites.
    Jia J; Sun X; Lin X; Shen X; Mai YW; Kim JK
    ACS Nano; 2014 Jun; 8(6):5774-83. PubMed ID: 24848106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connecting Microscopic Structures, Mesoscale Assemblies, and Macroscopic Architectures in 3D-Printed Hierarchical Porous Covalent Organic Framework Foams.
    Mohammed AK; Usgaonkar S; Kanheerampockil F; Karak S; Halder A; Tharkar M; Addicoat M; Ajithkumar TG; Banerjee R
    J Am Chem Soc; 2020 May; 142(18):8252-8261. PubMed ID: 32279483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates.
    Sha J; Gao C; Lee SK; Li Y; Zhao N; Tour JM
    ACS Nano; 2016 Jan; 10(1):1411-6. PubMed ID: 26678869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties.
    Han M; Yin X; Hou Z; Song C; Li X; Zhang L; Cheng L
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11803-11810. PubMed ID: 28317374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.
    Wu L; Li W; Li P; Liao S; Qiu S; Chen M; Guo Y; Li Q; Zhu C; Liu L
    Small; 2014 Apr; 10(7):1421-9. PubMed ID: 24323826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene in macroscopic order: liquid crystals and wet-spun fibers.
    Xu Z; Gao C
    Acc Chem Res; 2014 Apr; 47(4):1267-76. PubMed ID: 24555686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame.
    Du X; Liu HY; Mai YW
    ACS Nano; 2016 Jan; 10(1):453-62. PubMed ID: 26635121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage.
    Wu ZS; Sun Y; Tan YZ; Yang S; Feng X; Müllen K
    J Am Chem Soc; 2012 Dec; 134(48):19532-5. PubMed ID: 23148416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties.
    Zhang L; Liu M; Bi S; Yang L; Roy S; Tang XZ; Mu C; Hu X
    J Colloid Interface Sci; 2017 May; 493():327-333. PubMed ID: 28119243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior lithium storage in a 3D macroporous graphene framework/SnO₂ nanocomposite.
    Liu X; Cheng J; Li W; Zhong X; Yang Z; Gu L; Yu Y
    Nanoscale; 2014 Jul; 6(14):7817-22. PubMed ID: 24910323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional highly conductive graphene-silver nanowire hybrid foams for flexible and stretchable conductors.
    Wu C; Fang L; Huang X; Jiang P
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21026-34. PubMed ID: 25376385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities.
    Zhang Z; Xiao F; Guo Y; Wang S; Liu Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2227-33. PubMed ID: 23429833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable Seashell-Based Chemical Vapor Deposition Growth of Three-Dimensional Graphene Foams for Oil-Water Separation.
    Shi L; Chen K; Du R; Bachmatiuk A; Rümmeli MH; Xie K; Huang Y; Zhang Y; Liu Z
    J Am Chem Soc; 2016 May; 138(20):6360-3. PubMed ID: 27157548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.
    Wang JK; Xiong GM; Zhu M; Özyilmaz B; Castro Neto AH; Tan NS; Choong C
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8275-83. PubMed ID: 25822669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.