These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28350230)

  • 1. Predicting in vivo behavior of injectable, in situ-forming drug-delivery systems.
    Hernandez C; Exner AA
    Ther Deliv; 2017 Jul; 8(7):479-483. PubMed ID: 28350230
    [No Abstract]   [Full Text] [Related]  

  • 2. Macroporous acrylamide phantoms improve prediction of in vivo performance of in situ forming implants.
    Hernandez C; Gawlik N; Goss M; Zhou H; Jeganathan S; Gilbert D; Exner AA
    J Control Release; 2016 Dec; 243():225-231. PubMed ID: 27742445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.
    Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J
    J Pharm Biomed Anal; 2018 Feb; 150():95-106. PubMed ID: 29216591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug release from in situ forming implants and advances in release testing.
    Wang X; Burgess DJ
    Adv Drug Deliv Rev; 2021 Nov; 178():113912. PubMed ID: 34363860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Crosslinked Methylcellulose Hydrogel: A Predictable and Tunable Platform for Local Drug Delivery.
    Pakulska MM; Vulic K; Tam RY; Shoichet MS
    Adv Mater; 2015 Sep; 27(34):5002-8. PubMed ID: 26184559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Subcutaneous Environment on Phase-Sensitive In Situ-Forming Implant Drug Release, Degradation, and Microstructure.
    Solorio L; Exner AA
    J Pharm Sci; 2015 Dec; 104(12):4322-4328. PubMed ID: 26506522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of PLGA-based injectable delivery systems for hydrophobic fenretinide.
    Wischke C; Zhang Y; Mittal S; Schwendeman SP
    Pharm Res; 2010 Oct; 27(10):2063-74. PubMed ID: 20668921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro-In Vivo Relationship of Amorphous Insoluble API (Progesterone) in PLGA Microspheres.
    Pu C; Wang Q; Zhang H; Gou J; Guo Y; Tan X; Xie B; Yin N; He H; Zhang Y; Wang Y; Yin T; Tang X
    Pharm Res; 2017 Dec; 34(12):2787-2797. PubMed ID: 28948463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging.
    Schädlich A; Kempe S; Mäder K
    J Control Release; 2014 Apr; 179():52-62. PubMed ID: 24503251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel adapter method for in vitro release testing of in situ forming implants.
    Wang X; Bao Q; Suh MS; Kastellorizios M; Wang R; Burgess DJ
    Int J Pharm; 2022 Jun; 621():121777. PubMed ID: 35489601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release.
    Parent M; Nouvel C; Koerber M; Sapin A; Maincent P; Boudier A
    J Control Release; 2013 Nov; 172(1):292-304. PubMed ID: 24001947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended-release dosage: recent advances and potential in pediatric medicine.
    Flament MP
    Ther Deliv; 2016; 7(4):197-9. PubMed ID: 27010982
    [No Abstract]   [Full Text] [Related]  

  • 13. How to measure release from nanosized carriers?
    Nothnagel L; Wacker MG
    Eur J Pharm Sci; 2018 Jul; 120():199-211. PubMed ID: 29751101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long lasting in-situ forming implant loaded with raloxifene HCl: An injectable delivery system for treatment of bone injuries.
    Elkasabgy NA; Abdel-Salam FS; Mahmoud AA; Basalious EB; Amer MS; Mostafa AA; Elkheshen SA
    Int J Pharm; 2019 Nov; 571():118703. PubMed ID: 31536761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a cage implant system for assessing in vivo performance of long-acting release microspheres.
    Doty AC; Hirota K; Olsen KF; Sakamoto N; Ackermann R; Feng MR; Wang Y; Choi S; Qu W; Schwendeman A; Schwendeman SP
    Biomaterials; 2016 Dec; 109():88-96. PubMed ID: 27693924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced antitumor efficacy of poly(D,L-lactide-co-glycolide)-based methotrexate-loaded implants on sarcoma 180 tumor-bearing mice.
    Gao L; Xia L; Zhang R; Duan D; Liu X; Xu J; Luo L
    Drug Des Devel Ther; 2017; 11():3065-3075. PubMed ID: 29118572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable 2D MoS2 -Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia.
    Wang S; Chen Y; Li X; Gao W; Zhang L; Liu J; Zheng Y; Chen H; Shi J
    Adv Mater; 2015 Nov; 27(44):7117-22. PubMed ID: 26447460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier.
    Tosi G; Bortot B; Ruozi B; Dolcetta D; Vandelli MA; Forni F; Severini GM
    Curr Med Chem; 2013; 20(17):2212-25. PubMed ID: 23458620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-Delivery of Atorvastatin Nanocrystals in PLGA based in situ Gel for Anti-Hyperlipidemic Efficacy.
    Kurakula M; Ahmed TA
    Curr Drug Deliv; 2016; 13(2):211-20. PubMed ID: 26549039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro Lipolysis as a Tool for the Establishment of IVIVC for Lipid-Based Drug Delivery Systems.
    Verma R; Kaushik D
    Curr Drug Deliv; 2019; 16(8):688-697. PubMed ID: 31250755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.