These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 2835094)
1. Tyrosine-371 contributes to the positive cooperativity between the two cAMP binding sites in the regulatory subunit of cAMP-dependent protein kinase I. Bubis J; Saraswat LD; Taylor SS Biochemistry; 1988 Mar; 27(5):1570-6. PubMed ID: 2835094 [TBL] [Abstract][Full Text] [Related]
2. Covalent modification of both cAMP binding sites in cAMP-dependent protein kinase I by 8-azidoadenosine 3',5'-monophosphate. Bubis J; Taylor SS Biochemistry; 1985 Apr; 24(9):2163-70. PubMed ID: 2986689 [TBL] [Abstract][Full Text] [Related]
3. Effects of cAMP-binding site mutations on intradomain cross-communication in the regulatory subunit of cAMP-dependent protein kinase I. Ringheim GE; Taylor SS J Biol Chem; 1990 Nov; 265(32):19472-8. PubMed ID: 2174038 [TBL] [Abstract][Full Text] [Related]
4. Limited proteolysis alters the photoaffinity labeling of adenosine 3',5'-monophosphate dependent protein kinase II with 8-azidoadenosine 3',5'-monophosphate. Bubis J; Taylor SS Biochemistry; 1987 Sep; 26(19):5997-6004. PubMed ID: 3689756 [TBL] [Abstract][Full Text] [Related]
5. A point mutation abolishes binding of cAMP to site A in the regulatory subunit of cAMP-dependent protein kinase. Bubis J; Neitzel JJ; Saraswat LD; Taylor SS J Biol Chem; 1988 Jul; 263(20):9668-73. PubMed ID: 2898473 [TBL] [Abstract][Full Text] [Related]
6. Dissecting the domain structure of the regulatory subunit of cAMP-dependent protein kinase I and elucidating the role of MgATP. Ringheim GE; Taylor SS J Biol Chem; 1990 Mar; 265(9):4800-8. PubMed ID: 2156855 [TBL] [Abstract][Full Text] [Related]
7. Site-specific cyclic nucleotide binding and dissociation of the holoenzyme of cAMP-dependent protein kinase. Kerlavage AR; Taylor SS J Biol Chem; 1982 Feb; 257(4):1749-54. PubMed ID: 6276398 [TBL] [Abstract][Full Text] [Related]
8. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Herberg FW; Taylor SS; Dostmann WR Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131 [TBL] [Abstract][Full Text] [Related]
9. Correlation of photolabeling with occupancy of cAMP binding sites in the regulatory subunit of cAMP-dependent protein kinase I. Bubis J; Taylor SS Biochemistry; 1987 Jun; 26(12):3478-86. PubMed ID: 2820470 [TBL] [Abstract][Full Text] [Related]
10. Covalent modification of an adenosine 3':5'-monophosphate binding site of the regulatory subunit of cAMP-dependent protein kinase II with 8-azidoadenosine 3':5'-monophosphate. Identification of a single modified tyrosine residue. Kerlavage AR; Taylor SS J Biol Chem; 1980 Sep; 255(18):8483-8. PubMed ID: 6251058 [TBL] [Abstract][Full Text] [Related]
11. Deletion of cAMP-binding site B in the regulatory subunit of cAMP-dependent protein kinase alters the photoaffinity labeling of site A. Ringheim GE; Saraswat LD; Bubis J; Taylor SS J Biol Chem; 1988 Dec; 263(34):18247-52. PubMed ID: 2848031 [TBL] [Abstract][Full Text] [Related]
12. Role of MgATP in the activation and reassociation of cAMP-dependent protein kinase I: consequences of replacing the essential arginine in cAMP binding site A. Neitzel JJ; Dostmann WR; Taylor SS Biochemistry; 1991 Jan; 30(3):733-9. PubMed ID: 1846304 [TBL] [Abstract][Full Text] [Related]
13. Expression and characterization of mutant forms of the type I regulatory subunit of cAMP-dependent protein kinase. The effect of defective cAMP binding on holoenzyme activation. Woodford TA; Correll LA; McKnight GS; Corbin JD J Biol Chem; 1989 Aug; 264(22):13321-8. PubMed ID: 2546952 [TBL] [Abstract][Full Text] [Related]
14. Cyclic AMP-dependent protein kinase I: cyclic nucleotide binding, structural changes, and release of the catalytic subunits. Smith SB; White HD; Siegel JB; Krebs EG Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1591-5. PubMed ID: 6262817 [TBL] [Abstract][Full Text] [Related]
15. Crosstalk between domains in the regulatory subunit of cAMP-dependent protein kinase: influence of amino terminus on cAMP binding and holoenzyme formation. Herberg FW; Dostmann WR; Zorn M; Davis SJ; Taylor SS Biochemistry; 1994 Jun; 33(23):7485-94. PubMed ID: 8003514 [TBL] [Abstract][Full Text] [Related]
16. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Kim C; Cheng CY; Saldanha SA; Taylor SS Cell; 2007 Sep; 130(6):1032-43. PubMed ID: 17889648 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence resonance energy transfer within a heterochromatic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insights into the conformational changes that result in cAMP-dependent activation. Johnson DA; Leathers VL; Martinez AM; Walsh DA; Fletcher WH Biochemistry; 1993 Jun; 32(25):6402-10. PubMed ID: 8390856 [TBL] [Abstract][Full Text] [Related]
18. Holoenzyme interaction sites in the cAMP-dependent protein kinase. Histidine 87 in the catalytic subunit complements serine 99 in the type I regulatory subunit. Cox S; Taylor SS J Biol Chem; 1994 Sep; 269(36):22614-22. PubMed ID: 8077212 [TBL] [Abstract][Full Text] [Related]
19. High affinity binding of the heat-stable protein kinase inhibitor to the catalytic subunit of cAMP-dependent protein kinase is selectively abolished by mutation of Arg133. Wen W; Taylor SS J Biol Chem; 1994 Mar; 269(11):8423-30. PubMed ID: 8132568 [TBL] [Abstract][Full Text] [Related]
20. A constitutively active holoenzyme form of the cAMP-dependent protein kinase. Wang YH; Scott JD; McKnight GS; Krebs EG Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2446-50. PubMed ID: 1848703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]