These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28350962)

  • 1. Multidimensional Hybridization of Dark Surface Plasmons.
    Yankovich AB; Verre R; Olsén E; Persson AEO; Trinh V; Dovner G; Käll M; Olsson E
    ACS Nano; 2017 Apr; 11(4):4265-4274. PubMed ID: 28350962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.
    Colliex C; Kociak M; Stéphan O
    Ultramicroscopy; 2016 Mar; 162():A1-A24. PubMed ID: 26778606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band modulation and in-plane propagation of surface plasmons in composite nanostructures.
    Xu DH; Zhang K; Shao MR; Wu HW; Fan RH; Peng RW; Wang M
    Opt Express; 2014 Oct; 22(21):25700-9. PubMed ID: 25401603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unprecedented Surface Plasmon Modes in Monoclinic MoO
    Zhu YP; El-Demellawi JK; Yin J; Lopatin S; Lei Y; Liu Z; Miao X; Mohammed OF; Alshareef HN
    Adv Mater; 2020 May; 32(19):e1908392. PubMed ID: 32201985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study.
    Myroshnychenko V; Nelayah J; Adamo G; Geuquet N; Rodríguez-Fernández J; Pastoriza-Santos I; MacDonald KF; Henrard L; Liz-Marzán LM; Zheludev NI; Kociak M; García de Abajo FJ
    Nano Lett; 2012 Aug; 12(8):4172-80. PubMed ID: 22746278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipolar Nanocube Plasmon Mode-Mixing in Finite Substrates.
    Cherqui C; Li G; Busche JA; Quillin SC; Camden JP; Masiello DJ
    J Phys Chem Lett; 2018 Feb; 9(3):504-512. PubMed ID: 29314843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation of dark plasmons in metal nanoparticles by a localized emitter.
    Liu M; Lee TW; Gray SK; Guyot-Sionnest P; Pelton M
    Phys Rev Lett; 2009 Mar; 102(10):107401. PubMed ID: 19392157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling light localization and light-matter interactions with nanoplasmonics.
    Giannini V; Fernández-Domínguez AI; Sonnefraud Y; Roschuk T; Fernández-García R; Maier SA
    Small; 2010 Nov; 6(22):2498-507. PubMed ID: 20878637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum.
    Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J
    Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes.
    Koh AL; Bao K; Khan I; Smith WE; Kothleitner G; Nordlander P; Maier SA; McComb DW
    ACS Nano; 2009 Oct; 3(10):3015-22. PubMed ID: 19772292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric excitation of surface plasmons by dark mode coupling.
    Zhang X; Xu Q; Li Q; Xu Y; Gu J; Tian Z; Ouyang C; Liu Y; Zhang S; Zhang X; Han J; Zhang W
    Sci Adv; 2016 Feb; 2(2):e1501142. PubMed ID: 26989777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions.
    Zhou W; Odom TW
    Nat Nanotechnol; 2011 May; 6(7):423-7. PubMed ID: 21572429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in ultrahigh-energy resolution EELS: phonons, infrared plasmons and strongly coupled modes.
    Lagos MJ; Bicket IC; Mousavi M SS; Botton GA
    Microscopy (Oxf); 2022 Feb; 71(Supplement_1):i174-i199. PubMed ID: 35275180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons.
    Mohammadi Z; Van Vlack CP; Hughes S; Bornemann J; Gordon R
    Opt Express; 2012 Jul; 20(14):15024-34. PubMed ID: 22772198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Far-field and near-field monitoring of hybridized optical modes from Au nanoprisms suspended on a graphene/Si nanopillar array.
    Nien LW; Chen K; Dao TD; Ishii S; Hsueh CH; Nagao T
    Nanoscale; 2017 Nov; 9(43):16950-16959. PubMed ID: 29077124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy.
    Tizei LHG; Mkhitaryan V; Lourenço-Martins H; Scarabelli L; Watanabe K; Taniguchi T; Tencé M; Blazit JD; Li X; Gloter A; Zobelli A; Schmidt FP; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2020 May; 20(5):2973-2979. PubMed ID: 31967839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation of multipole plasmons by optical vortex beams.
    Sakai K; Nomura K; Yamamoto T; Sasaki K
    Sci Rep; 2015 Feb; 5():8431. PubMed ID: 25672226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local optical responses of plasmon resonances visualised by near-field optical imaging.
    Okamoto H; Narushima T; Nishiyama Y; Imura K
    Phys Chem Chem Phys; 2015 Mar; 17(9):6192-206. PubMed ID: 25660963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.