BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 2835106)

  • 1. Chemical modification of cytochrome b5, cytochrome c and myoglobin with diethylpyrocarbonate.
    Konopka K; Waskell L
    Biochim Biophys Acta; 1988 May; 954(2):189-200. PubMed ID: 2835106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of trypsin-solubilized cytochrome b5, apocytochrome b5, and liposome-bound cytochrome b5 by diethylpyrocarbonate.
    Konopka K; Waskell L
    Arch Biochem Biophys; 1988 Feb; 261(1):55-63. PubMed ID: 3341778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histidine residues in rabbit liver microsomal cytochrome P-450 2B4 control electron transfer from NADPH-cytochrome P-450 reductase and cytochrome b5.
    Hlavica P; Lehnerer M; Eulitz M
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):857-62. PubMed ID: 8836129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase of hepatic microsomes.
    Tamburini PP; MacFarquhar S; Schenkman JB
    Biochem Biophys Res Commun; 1986 Jan; 134(2):519-26. PubMed ID: 3080992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cytochrome b5 on cytochrome P-450-catalyzed reactions. Studies with manganese-substituted cytochrome b5.
    Morgan ET; Coon MJ
    Drug Metab Dispos; 1984; 12(3):358-64. PubMed ID: 6145564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the mechanism of functional interaction between NADPH-cytochrome P-450 reductase and its redox partners.
    Tamburini PP; Schenkman JB
    Mol Pharmacol; 1986 Aug; 30(2):178-85. PubMed ID: 3016501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical characterization of protein-protein interactions between cytochrome P-450 and cytochrome b5.
    Tamburini PP; White RE; Schenkman JB
    J Biol Chem; 1985 Apr; 260(7):4007-15. PubMed ID: 3920211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome b5, cytochrome c, and cytochrome P-450 interactions with NADPH-cytochrome P-450 reductase in phospholipid vesicles.
    Nisimoto Y; Otsuka-Murakami H
    Biochemistry; 1988 Aug; 27(16):5869-76. PubMed ID: 2847775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methoxyflurane acts at the substrate binding site of cytochrome P450 LM2 to induce a dependence on cytochrome b5.
    Lipka JJ; Waskell LA
    Arch Biochem Biophys; 1989 Jan; 268(1):152-60. PubMed ID: 2912373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of KCl on the interactions between NADPH:cytochrome P-450 reductase and either cytochrome c, cytochrome b5 or cytochrome P-450 in octyl glucoside micelles.
    Nisimoto Y; Edmondson DE
    Eur J Biochem; 1992 Mar; 204(3):1075-82. PubMed ID: 1312930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The functional role of cytochrome b5 reincorporated into hepatic microsomal fractions.
    Golly I; Hlavica P; Schartau W
    Arch Biochem Biophys; 1988 Jan; 260(1):232-40. PubMed ID: 3124747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The identification of the heat-stable microsomal protein required for methoxyflurane metabolism as cytochrome b5.
    Canova-Davis E; Waskell L
    J Biol Chem; 1984 Feb; 259(4):2541-6. PubMed ID: 6698981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turnover of two drug-inducible forms of microsomal cytochrome P-450 in rat liver.
    Sadano H; Omura T
    J Biochem; 1983 May; 93(5):1375-83. PubMed ID: 6411696
    [No Abstract]   [Full Text] [Related]  

  • 15. Chemical modification of chloroperoxidase with diethylpyrocarbonate. Evidence for the presence of an essential histidine residue.
    Blanke SR; Hager LP
    J Biol Chem; 1990 Jul; 265(21):12454-61. PubMed ID: 2373700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of apo-cytochrome b5 with cytochromes P4503A4 and P45017A: relevance of heme transfer reactions.
    Guryev OL; Gilep AA; Usanov SA; Estabrook RW
    Biochemistry; 2001 Apr; 40(16):5018-31. PubMed ID: 11305918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random distribution of NADPH-specific flavoprotein and cytochrome P-450 in liver microsomes.
    Archakov AI; Borodin EA; Davydov DR; Karyakin AI; Borovyagin VL
    Biochem Biophys Res Commun; 1982 Dec; 109(3):832-40. PubMed ID: 6818968
    [No Abstract]   [Full Text] [Related]  

  • 18. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate.
    Loughran PA; Roman LJ; Miller RT; Masters BS
    Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome C (Fe2+) as a competitive inhibitor of NADPH-dependent reduction of cytochrome P450 LM2: locating protein-protein interaction sites in microsomal electron carriers.
    Davydov DR; Darovsky BV; Dedinsky IR; Kanaeva IP; Bachmanova GI; Blinov VM; Archakov AI
    Arch Biochem Biophys; 1992 Sep; 297(2):304-13. PubMed ID: 1323242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of cytochrome P450 reactions by apo-cytochrome b5: evidence against transfer of heme from cytochrome P450 3A4 to apo-cytochrome b5 or heme oxygenase.
    Yamazaki H; Shimada T; Martin MV; Guengerich FP
    J Biol Chem; 2001 Aug; 276(33):30885-91. PubMed ID: 11413149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.