BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2835113)

  • 1. Preferential effects of caffeine on limbic and cortical dopamine systems.
    Stoner GR; Skirboll LR; Werkman S; Hommer DW
    Biol Psychiatry; 1988 Apr; 23(8):761-8. PubMed ID: 2835113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area.
    Bowery B; Rothwell LA; Seabrook GR
    Br J Pharmacol; 1994 Jul; 112(3):873-80. PubMed ID: 7921615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective activation of mesolimbic and mesocortical dopamine metabolism in rat brain by infusion of a stable substance P analogue into the ventral tegmental area.
    Elliott PJ; Alpert JE; Bannon MJ; Iversen SD
    Brain Res; 1986 Jan; 363(1):145-7. PubMed ID: 2418910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of non-dopamine cells in the ventral tegmental area by benzodiazepines: relationship to A10 dopamine cell activity.
    O'Brien DP; White FJ
    Eur J Pharmacol; 1987 Oct; 142(3):343-54. PubMed ID: 2892684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons.
    Hand TH; Hu XT; Wang RY
    Brain Res; 1987 Jul; 415(2):257-69. PubMed ID: 3607497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of phencyclidine and N-allylnormetazocine on midbrain dopamine neuronal activity.
    Freeman AS; Bunney BS
    Eur J Pharmacol; 1984 Sep; 104(3-4):287-93. PubMed ID: 6094217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similar effects of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat.
    Kalivas PW; Duffy P
    Biol Psychiatry; 1989 Apr; 25(7):913-28. PubMed ID: 2541803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic haloperidol-amphetamine interactions and mesolimbic dopamine.
    Lynch MR; Kuhn HG; Carey RJ
    Neuropsychobiology; 1988; 19(2):97-103. PubMed ID: 3226530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphine-induced activation of A10 dopamine neurons in the rat.
    Gysling K; Wang RY
    Brain Res; 1983 Oct; 277(1):119-27. PubMed ID: 6315137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible receptor inactivation reveals differences in dopamine receptor reserve between A9 and A10 dopamine systems: an electrophysiological analysis.
    Cox RF; Waszczak BL
    Brain Res; 1990 Nov; 534(1-2):273-82. PubMed ID: 1981482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Midbrain dopamine neurons: differential responses to amphetamine isomers.
    Browder S; German DC; Shore PA
    Brain Res; 1981 Mar; 207(2):333-42. PubMed ID: 7470912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigrostriatal dopamine systems.
    Koob GF; Simon H; Herman JP; Le Moal M
    Brain Res; 1984 Jun; 303(2):319-29. PubMed ID: 6430466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesolimbic and mesocortical dopamine activation induced by phencyclidine: contrasting pattern to striatal response.
    Deutch AY; Tam SY; Freeman AS; Bowers MB; Roth RH
    Eur J Pharmacol; 1987 Feb; 134(3):257-64. PubMed ID: 3569414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Burst firing of mesencephalic dopamine neurons is inhibited by somatodendritic application of kynurenate.
    Charlety PJ; Grenhoff J; Chergui K; De la Chapelle B; Buda M; Svensson TH; Chouvet G
    Acta Physiol Scand; 1991 May; 142(1):105-12. PubMed ID: 1877358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of CNS dopamine receptors by peptides.
    Mishra RK
    Prog Neuropsychopharmacol Biol Psychiatry; 1983; 7(4-6):437-42. PubMed ID: 6141599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of competitive N-methyl-D-aspartate antagonists on midbrain dopamine neurons: an electrophysiological and behavioral comparison to phencyclidine.
    French ED; Ferkany J; Abreu M; Levenson S
    Neuropharmacology; 1991 Oct; 30(10):1039-46. PubMed ID: 1836840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-2 dopamine antagonist-like effects of SCH 23390 on A9 and A10 dopamine neurons.
    Goldstein JM; Litwin LC; Sutton EB; Malick JB
    Life Sci; 1987 Mar; 40(11):1039-44. PubMed ID: 2950291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of neurokinin3 receptors antagonizes drug-induced population response and depolarization block of midbrain dopamine neurons in guinea pigs.
    Gueudet C; Santucci V; Soubrié P; Le Fur G
    Synapse; 1999 Jul; 33(1):71-9. PubMed ID: 10380852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of GBR 12909, a dopamine re-uptake inhibitor, on monoaminergic neurotransmission in rat striatum, limbic forebrain, cortical hemispheres and substantia nigra.
    Nissbrandt H; Engberg G; Pileblad E
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jul; 344(1):16-28. PubMed ID: 1663587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perinatal delta 9-tetrahydrocannabinol exposure in rats modifies the responsiveness of midbrain dopaminergic neurons in adulthood to a variety of challenges with dopaminergic drugs.
    García L; de Miguel R; Ramos JA; Fernàndez-Ruiz JJ
    Drug Alcohol Depend; 1996 Nov; 42(3):155-66. PubMed ID: 8912798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.