BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 28351197)

  • 21. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator.
    Aoi S; Ogihara N; Funato T; Sugimoto Y; Tsuchiya K
    Biol Cybern; 2010 May; 102(5):373-87. PubMed ID: 20217427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human spinal locomotor control is based on flexibly organized burst generators.
    Danner SM; Hofstoetter US; Freundl B; Binder H; Mayr W; Rattay F; Minassian K
    Brain; 2015 Mar; 138(Pt 3):577-88. PubMed ID: 25582580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry.
    Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S
    J Neurophysiol; 2012 Jul; 108(1):124-34. PubMed ID: 22490556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chapter 2--the spinal generation of phases and cycle duration.
    Gossard JP; Sirois J; Noué P; Côté MP; Ménard A; Leblond H; Frigon A
    Prog Brain Res; 2011; 188():15-29. PubMed ID: 21333800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcutaneous electrical spinal-cord stimulation in humans.
    Gerasimenko Y; Gorodnichev R; Moshonkina T; Sayenko D; Gad P; Reggie Edgerton V
    Ann Phys Rehabil Med; 2015 Sep; 58(4):225-231. PubMed ID: 26205686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The execution of movement: a spinal affair.
    Grillner S
    J Neurophysiol; 2021 Feb; 125(2):693-698. PubMed ID: 33356910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of locomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level.
    Ribotta MG; Provencher J; Feraboli-Lohnherr D; Rossignol S; Privat A; Orsal D
    J Neurosci; 2000 Jul; 20(13):5144-52. PubMed ID: 10864971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speed dependency in α-motoneuron activity and locomotor modules in human locomotion: indirect evidence for phylogenetically conserved spinal circuits.
    Yokoyama H; Ogawa T; Shinya M; Kawashima N; Nakazawa K
    Proc Biol Sci; 2017 Mar; 284(1851):. PubMed ID: 28356457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexibility of the axial central pattern generator network for locomotion in the salamander.
    Ryczko D; Knüsel J; Crespi A; Lamarque S; Mathou A; Ijspeert AJ; Cabelguen JM
    J Neurophysiol; 2015 Mar; 113(6):1921-40. PubMed ID: 25540227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG.
    Ausborn J; Snyder AC; Shevtsova NA; Rybak IA; Rubin JE
    J Neurophysiol; 2018 Jan; 119(1):96-117. PubMed ID: 28978767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Afferent control of locomotor CPG: insights from a simple neuromechanical model.
    Markin SN; Klishko AN; Shevtsova NA; Lemay MA; Prilutsky BI; Rybak IA
    Ann N Y Acad Sci; 2010 Jun; 1198():21-34. PubMed ID: 20536917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of stimulating the lumbar skin caudal to a complete spinal cord injury on hindlimb locomotion.
    Hurteau MF; Thibaudier Y; Dambreville C; Desaulniers C; Frigon A
    J Neurophysiol; 2015 Jan; 113(2):669-76. PubMed ID: 25339715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Central pattern generating networks in insect locomotion.
    Mantziaris C; Bockemühl T; Büschges A
    Dev Neurobiol; 2020 Jan; 80(1-2):16-30. PubMed ID: 32128970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Critical Points and Traveling Wave in Locomotion: Experimental Evidence and Some Theoretical Considerations.
    Saltiel P; d'Avella A; Tresch MC; Wyler K; Bizzi E
    Front Neural Circuits; 2017; 11():98. PubMed ID: 29276476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An optimality principle for locomotor central pattern generators.
    Ryu HX; Kuo AD
    Sci Rep; 2021 Jun; 11(1):13140. PubMed ID: 34162903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Taking a Big Step towards Understanding Locomotion.
    Wyart C
    Trends Neurosci; 2018 Dec; 41(12):869-870. PubMed ID: 30471663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study.
    Bui TV; Brownstone RM
    J Neurophysiol; 2015 Apr; 113(7):2824-39. PubMed ID: 25673740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the serotonergic system in locomotor recovery after spinal cord injury.
    Ghosh M; Pearse DD
    Front Neural Circuits; 2014; 8():151. PubMed ID: 25709569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.