BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 28351197)

  • 41. [Central pattern generators in the spinal cord of the cat and their relevance in rehabilitation after spinal lesion].
    Dillenseger A; Schulze S; Martens H; Schmidt MJ
    Tierarztl Prax Ausg K Kleintiere Heimtiere; 2016; 44(1):39-46. PubMed ID: 26530110
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plastic Changes in Lumbar Locomotor Networks after a Partial Spinal Cord Injury in Cats.
    Gossard JP; Delivet-Mongrain H; Martinez M; Kundu A; Escalona M; Rossignol S
    J Neurosci; 2015 Jun; 35(25):9446-55. PubMed ID: 26109667
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple Rhythm-Generating Circuits Act in Tandem with Pacemaker Properties to Control the Start and Speed of Locomotion.
    Song J; Pallucchi I; Ausborn J; Ampatzis K; Bertuzzi M; Fontanel P; Picton LD; El Manira A
    Neuron; 2020 Mar; 105(6):1048-1061.e4. PubMed ID: 31982322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergy temporal sequences and topography in the spinal cord: evidence for a traveling wave in frog locomotion.
    Saltiel P; d'Avella A; Wyler-Duda K; Bizzi E
    Brain Struct Funct; 2016 Nov; 221(8):3869-3890. PubMed ID: 26501407
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.
    Rangasamy SB
    Synapse; 2013 Jul; 67(7):427-53. PubMed ID: 23401170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Locomotor pattern generation and descending control: a historical perspective.
    Dubuc R; Cabelguen JM; Ryczko D
    J Neurophysiol; 2023 Aug; 130(2):401-416. PubMed ID: 37465884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional Recovery of a Locomotor Network after Injury: Plasticity beyond the Central Nervous System.
    Puhl JG; Bigelow AW; Rue MCP; Mesce KA
    eNeuro; 2018; 5(4):. PubMed ID: 30073189
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epidural electrical stimulation to facilitate locomotor recovery after spinal cord injury.
    Audet J; Lecomte CG
    J Neurophysiol; 2021 Nov; 126(5):1751-1755. PubMed ID: 34705588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diversity of molecularly defined spinal interneurons engaged in mammalian locomotor pattern generation.
    Ziskind-Conhaim L; Hochman S
    J Neurophysiol; 2017 Dec; 118(6):2956-2974. PubMed ID: 28855288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling.
    McClellan AD; Jang W
    J Neurophysiol; 1993 Dec; 70(6):2442-54. PubMed ID: 8120592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multilevel Analysis of Locomotion in Immature Preparations Suggests Innovative Strategies to Reactivate Stepping after Spinal Cord Injury.
    Brumley MR; Guertin PA; Taccola G
    Curr Pharm Des; 2017; 23(12):1764-1777. PubMed ID: 27981910
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of transitions between locomotor-like and paw shake-like rhythms in a model of a multistable central pattern generator.
    Parker J; Bondy B; Prilutsky BI; Cymbalyuk G
    J Neurophysiol; 2018 Sep; 120(3):1074-1089. PubMed ID: 29766765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for a spinal central pattern generator in humans.
    Dimitrijevic MR; Gerasimenko Y; Pinter MM
    Ann N Y Acad Sci; 1998 Nov; 860():360-76. PubMed ID: 9928325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Locomotor circuits in the mammalian spinal cord.
    Kiehn O
    Annu Rev Neurosci; 2006; 29():279-306. PubMed ID: 16776587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transition of pattern generation: the phenomenon of post-scratching locomotion.
    Trejo A; Tapia JA; De la Torre Valdovinos B; Huidobro N; Flores G; Flores-Hernandez J; Flores A; Manjarrez E
    Neuroscience; 2015 Mar; 288():156-66. PubMed ID: 25556832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
    Yeldesbay A; Tóth T; Daun S
    J Comput Neurosci; 2018 Jun; 44(3):313-339. PubMed ID: 29589252
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion.
    Song S; Geyer H
    J Physiol; 2015 Aug; 593(16):3493-511. PubMed ID: 25920414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spinal control of locomotion--from cat to man.
    Hultborn H; Nielsen JB
    Acta Physiol (Oxf); 2007 Feb; 189(2):111-21. PubMed ID: 17250563
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase-Dependent Response to Afferent Stimulation During Fictive Locomotion: A Computational Modeling Study.
    Fujiki S; Aoi S; Tsuchiya K; Danner SM; Rybak IA; Yanagihara D
    Front Neurosci; 2019; 13():1288. PubMed ID: 31849596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.