These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1094 related articles for article (PubMed ID: 28351406)

  • 1. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data.
    Lin P; Troup M; Ho JW
    Genome Biol; 2017 Mar; 18(1):59. PubMed ID: 28351406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis.
    Wang L; Li W; Zhou F; Yu K; Feng C; Zhao D
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data.
    Ren X; Zheng L; Zhang Z
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):201-210. PubMed ID: 31202000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means.
    Wang X; Gao H; Qi R; Zheng R; Gao X; Yu B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2007-2015. PubMed ID: 37015596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy.
    Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.
    Azim R; Wang S; Dipu SA
    Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion.
    Pan X; Li Z; Qin S; Yu M; Hu H
    BMC Genomics; 2021 Nov; 22(1):860. PubMed ID: 34844559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data.
    Qi J; Zhou Y; Zhao Z; Jin S
    PLoS Comput Biol; 2021 Jun; 17(6):e1009118. PubMed ID: 34138847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering.
    Gao H; Shen W; Li R; Liu C; Wu S
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1480-1491. PubMed ID: 38776196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq.
    Zhang JM; Kamath GM; Tse DN
    Cell Syst; 2019 Oct; 9(4):383-392.e6. PubMed ID: 31521605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.