These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28351637)
81. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application. Vlakh EG; Tennikova TB J Sep Sci; 2013 Mar; 36(6):1149-67. PubMed ID: 23495116 [TBL] [Abstract][Full Text] [Related]
82. Immobilized monolithic enzyme reactors for application in proteomics and pharmaceutics. Spross J; Sinz A Anal Bioanal Chem; 2009 Nov; 395(6):1583-8. PubMed ID: 19669640 [TBL] [Abstract][Full Text] [Related]
83. Preparation of a hollow porous molecularly imprinted polymer using tetrabromobisphenol A as a dummy template and its application as SPE sorbent for determination of bisphenol A in tap water. Li J; Zhang X; Liu Y; Tong H; Xu Y; Liu S Talanta; 2013 Dec; 117():281-7. PubMed ID: 24209342 [TBL] [Abstract][Full Text] [Related]
84. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved "one-pot" approach for hydrophilic-interaction liquid chromatography (HILIC). Lin H; Ou J; Zhang Z; Dong J; Wu M; Zou H Anal Chem; 2012 Mar; 84(6):2721-8. PubMed ID: 22397551 [TBL] [Abstract][Full Text] [Related]
85. Macroporous monoliths for biodegradation study of polymer particles considered as drug delivery systems. Volokitina MV; Korzhikov-Vlakh VA; Tennikova TB; Korzhikova-Vlakh EG J Pharm Biomed Anal; 2017 Oct; 145():169-177. PubMed ID: 28666163 [TBL] [Abstract][Full Text] [Related]
86. Recent developments in the field of monolithic stationary phases for capillary electrochromatography. Svec F J Sep Sci; 2005 May; 28(8):729-45. PubMed ID: 15940819 [TBL] [Abstract][Full Text] [Related]
87. Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. Greiderer A; Trojer L; Huck CW; Bonn GK J Chromatogr A; 2009 Nov; 1216(45):7747-54. PubMed ID: 19762035 [TBL] [Abstract][Full Text] [Related]
88. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion. Yuan H; Zhang L; Zhang Y J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586 [TBL] [Abstract][Full Text] [Related]
89. Fabrication of molecularly imprinted hybrid monoliths via a room temperature ionic liquid-mediated nonhydrolytic sol-gel route for chiral separation of zolmitriptan by capillary electrochromatography. Wang HF; Zhu YZ; Lin JP; Yan XP Electrophoresis; 2008 Feb; 29(4):952-9. PubMed ID: 18203253 [TBL] [Abstract][Full Text] [Related]
90. Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates. Ghanem A; Ahmed M; Ishii H; Ikegami T Talanta; 2015 Jan; 132():301-14. PubMed ID: 25476312 [TBL] [Abstract][Full Text] [Related]
91. Organic monoliths for high-performance reversed-phase liquid chromatography. Liu K; Aggarwal P; Lawson JS; Tolley HD; Lee ML J Sep Sci; 2013 Sep; 36(17):2767-81. PubMed ID: 23813977 [TBL] [Abstract][Full Text] [Related]
92. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples. da Silva MR; Mauro Lanças F J Sep Sci; 2018 May; 41(10):2237-2244. PubMed ID: 29524324 [TBL] [Abstract][Full Text] [Related]
93. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. Nischang I; Brüggemann O J Chromatogr A; 2010 Aug; 1217(33):5389-97. PubMed ID: 20598699 [TBL] [Abstract][Full Text] [Related]
94. A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies. Jiang S; Zhang Z; Li L J Chromatogr A; 2015 Sep; 1412():75-81. PubMed ID: 26300481 [TBL] [Abstract][Full Text] [Related]
95. Fabrication of enrofloxacin imprinted organic-inorganic hybrid mesoporous sorbent from nanomagnetic polyhedral oligomeric silsesquioxanes for the selective extraction of fluoroquinolones in milk samples. He HB; Dong C; Li B; Dong JP; Bo TY; Wang TL; Yu QW; Feng YQ J Chromatogr A; 2014 Sep; 1361():23-33. PubMed ID: 25171943 [TBL] [Abstract][Full Text] [Related]
97. Molecularly imprinted polymer layer-coated silica nanoparticles toward dispersive solid-phase extraction of trace sulfonylurea herbicides from soil and crop samples. Peng Y; Xie Y; Luo J; Nie L; Chen Y; Chen L; Du S; Zhang Z Anal Chim Acta; 2010 Aug; 674(2):190-200. PubMed ID: 20678629 [TBL] [Abstract][Full Text] [Related]
98. Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Arrua RD; Talebi M; Causon TJ; Hilder EF Anal Chim Acta; 2012 Aug; 738():1-12. PubMed ID: 22790694 [TBL] [Abstract][Full Text] [Related]
99. Preparation of ionic liquid-mediated imprinted monolith for selective capture and purification of corilagin. Wang C; Li XJ; Yang J; Zhao YX; Liu ZS; Aisa HA J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jan; 1041-1042():98-103. PubMed ID: 28027522 [TBL] [Abstract][Full Text] [Related]
100. Probe decorated porous silica and polymer monoliths as solid-state optical sensors and preconcentrators for the selective and fast recognition of ultra-trace arsenic ions. Sompalli NK; Kuppusamy S; Mohan AM; Modak VA; Rao CVSB; Nagarajan S; Deivasigamani P J Hazard Mater; 2022 Jan; 421():126828. PubMed ID: 34396964 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]