BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

797 related articles for article (PubMed ID: 28351641)

  • 1. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of SRM, MRM(3) , and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer.
    Schmidlin T; Garrigues L; Lane CS; Mulder TC; van Doorn S; Post H; de Graaf EL; Lemeer S; Heck AJ; Altelaar AF
    Proteomics; 2016 Aug; 16(15-16):2193-205. PubMed ID: 27219855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry.
    Gallien S; Domon B
    Methods; 2015 Jun; 81():15-23. PubMed ID: 25843604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Parallel Reaction Monitoring with Electron Transfer Dissociation for Middle-Down Proteomics: An Application to Study the Quantitative Changes Induced by Histone Modifying Enzyme Inhibitors and Activators.
    Sweredoski MJ; Moradian A; Hess S
    Methods Mol Biol; 2017; 1647():61-69. PubMed ID: 28808995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues.
    Faktor J; Sucha R; Paralova V; Liu Y; Bouchal P
    Proteomics; 2017 Mar; 17(5):. PubMed ID: 27966270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in targeted proteomics and applications to biomedical research.
    Shi T; Song E; Nie S; Rodland KD; Liu T; Qian WJ; Smith RD
    Proteomics; 2016 Aug; 16(15-16):2160-82. PubMed ID: 27302376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical considerations for large-scale parallel reaction monitoring analysis.
    Gallien S; Bourmaud A; Kim SY; Domon B
    J Proteomics; 2014 Apr; 100():147-59. PubMed ID: 24200835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry.
    Rauniyar N
    Int J Mol Sci; 2015 Dec; 16(12):28566-81. PubMed ID: 26633379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.
    Gallien S; Duriez E; Crone C; Kellmann M; Moehring T; Domon B
    Mol Cell Proteomics; 2012 Dec; 11(12):1709-23. PubMed ID: 22962056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.
    Kockmann T; Trachsel C; Panse C; Wahlander A; Selevsek N; Grossmann J; Wolski WE; Schlapbach R
    Proteomics; 2016 Aug; 16(15-16):2183-92. PubMed ID: 27130639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques.
    Meyer JG; Schilling B
    Expert Rev Proteomics; 2017 May; 14(5):419-429. PubMed ID: 28436239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine.
    Mermelekas G; Vlahou A; Zoidakis J
    Expert Rev Mol Diagn; 2015; 15(11):1441-54. PubMed ID: 26472065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications.
    Bourmaud A; Gallien S; Domon B
    Proteomics; 2016 Aug; 16(15-16):2146-59. PubMed ID: 27145088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer.
    Hoffman MA; Fang B; Haura EB; Rix U; Koomen JM
    J Proteome Res; 2018 Jan; 17(1):63-75. PubMed ID: 29164889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM.
    Nakamura K; Hirayama-Kurogi M; Ito S; Kuno T; Yoneyama T; Obuchi W; Terasaki T; Ohtsuki S
    Proteomics; 2016 Aug; 16(15-16):2106-17. PubMed ID: 27197958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra.
    de Graaf EL; Altelaar AF; van Breukelen B; Mohammed S; Heck AJ
    J Proteome Res; 2011 Sep; 10(9):4334-41. PubMed ID: 21726076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical advances in proteomics: new developments in data-independent acquisition.
    Hu A; Noble WS; Wolf-Yadlin A
    F1000Res; 2016; 5():. PubMed ID: 27092249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted proteomics by selected reaction monitoring mass spectrometry: applications to systems biology and biomarker discovery.
    Elschenbroich S; Kislinger T
    Mol Biosyst; 2011 Feb; 7(2):292-303. PubMed ID: 20976349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining label-free and label-based accurate quantifications with SWATH-MS: Comparison with SRM and PRM for the evaluation of bovine muscle type effects.
    Bons J; Husson G; Chion M; Bonnet M; Maumy-Bertrand M; Delalande F; Cianférani S; Bertrand F; Picard B; Carapito C
    Proteomics; 2021 May; 21(10):e2000214. PubMed ID: 33733615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in high-resolution quantitative proteomics: implications for clinical applications.
    Gallien S; Domon B
    Expert Rev Proteomics; 2015; 12(5):489-98. PubMed ID: 26189960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.