These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28351736)

  • 1. Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.
    Jamwal PK; Hussain S; Tsoi YH; Ghayesh MH; Xie SQ
    Clin Biomech (Bristol, Avon); 2017 May; 44():75-82. PubMed ID: 28351736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An open-source OpenSim® ankle-foot musculoskeletal model for assessment of strains and forces in dense connective tissues.
    Sikidar A; Kalyanasundaram D
    Comput Methods Programs Biomed; 2022 Sep; 224():106994. PubMed ID: 35843077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Number of Segments Within Musculoskeletal Foot Models Influences Ankle Kinematics and Strains of Ligaments and Muscles.
    Kim H; Kipp K
    J Orthop Res; 2019 Oct; 37(10):2231-2240. PubMed ID: 31206865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint moments and contact forces in the foot during walking.
    Kim Y; Lee KM; Koo S
    J Biomech; 2018 Jun; 74():79-85. PubMed ID: 29735264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model characterising Achilles tendon dynamics in flexion.
    Chatzistefani N; Chappell MJ; Hutchinson C; Kletzenbauer S; Evans ND
    Math Biosci; 2017 Feb; 284():92-102. PubMed ID: 27833002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of passive motion characteristics of the ankle joint complex using dual Euler angle parameters.
    Ying N; Kim W; Wong Y; Kam BH
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):153-60. PubMed ID: 14967578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moment arms of the ankle throughout the range of motion in three planes.
    McCullough MB; Ringleb SI; Arai K; Kitaoka HB; Kaufman KR
    Foot Ankle Int; 2011 Mar; 32(3):300-6. PubMed ID: 21477550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and validation of a general purpose robotic testing system for musculoskeletal applications.
    Noble LD; Colbrunn RW; Lee DG; van den Bogert AJ; Davis BL
    J Biomech Eng; 2010 Feb; 132(2):025001. PubMed ID: 20370251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ankle ligament tensile forces at the end points of passive circumferential rotating motion of the ankle and subtalar joint complex.
    Ozeki S; Kitaoka H; Uchiyama E; Luo ZP; Kaufman K; An KN
    Foot Ankle Int; 2006 Nov; 27(11):965-9. PubMed ID: 17144961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of passive moment-angle relationships at the trapeziometacarpal joint.
    Domalain M; Vigouroux L; Berton E
    J Biomech Eng; 2010 Jul; 132(7):071009. PubMed ID: 20590287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive motion characteristics of the talocrural and the subtalar joint by dual Euler angles.
    Wong Y; Kim W; Ying N
    J Biomech; 2005 Dec; 38(12):2480-5. PubMed ID: 16214496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics of the human ankle complex in passive flexion; a single degree of freedom system.
    Leardini A; O'Connor JJ; Catani F; Giannini S
    J Biomech; 1999 Feb; 32(2):111-8. PubMed ID: 10052915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms.
    Di Gregorio R; Parenti-Castelli V; O'Connor JJ; Leardini A
    Med Biol Eng Comput; 2007 Mar; 45(3):305-13. PubMed ID: 17295023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting roles of inertial and muscle moments at knee and ankle during paw-shake response.
    Hoy MG; Zernicke RF; Smith JL
    J Neurophysiol; 1985 Nov; 54(5):1282-94. PubMed ID: 4078617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional ankle kinetostatic model to simulate loaded and unloaded joint motion.
    Forlani M; Sancisi N; Parenti-Castelli V
    J Biomech Eng; 2015 Jun; 137(6):061005. PubMed ID: 25751452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relation between geometry and function of the ankle joint complex: a biomechanical review.
    Kleipool RP; Blankevoort L
    Knee Surg Sports Traumatol Arthrosc; 2010 May; 18(5):618-27. PubMed ID: 20300732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assistance force-line of exosuit affects ankle multidimensional motion: a theoretical and experimental study.
    Zhang X; Li Y; Sun R
    J Neuroeng Rehabil; 2024 May; 21(1):87. PubMed ID: 38807221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes.
    Lewis GS; Sommer HJ; Piazza SJ
    J Biomech Eng; 2006 Aug; 128(4):596-603. PubMed ID: 16813451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Quantification of Stabilizing Effects of Subtalar Joint Soft-Tissue Constraints in a Novel Cadaveric Model.
    Pellegrini MJ; Glisson RR; Wurm M; Ousema PH; Romash MM; Nunley JA; Easley ME
    J Bone Joint Surg Am; 2016 May; 98(10):842-8. PubMed ID: 27194494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.