These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 28351764)
1. Motor learning paradigm and contextual interference in manual computer tasks in individuals with cerebral palsy. Prado MTA; Fernani DCGL; Silva TDD; Smorenburg ARP; Abreu LC; Monteiro CBM Res Dev Disabil; 2017 May; 64():56-63. PubMed ID: 28351764 [TBL] [Abstract][Full Text] [Related]
2. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone. de Paula JN; de Mello Monteiro CB; da Silva TD; Capelini CM; de Menezes LDC; Massetti T; Tonks J; Watson S; Nicolai Ré AH Disabil Rehabil Assist Technol; 2018 Aug; 13(6):609-613. PubMed ID: 29092683 [TBL] [Abstract][Full Text] [Related]
3. The influence of errors during practice on motor learning in young individuals with cerebral palsy. van Abswoude F; Santos-Vieira B; van der Kamp J; Steenbergen B Res Dev Disabil; 2015; 45-46():353-64. PubMed ID: 26299638 [TBL] [Abstract][Full Text] [Related]
4. Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. de Mello Monteiro CB; Massetti T; da Silva TD; van der Kamp J; de Abreu LC; Leone C; Savelsbergh GJ Res Dev Disabil; 2014 Oct; 35(10):2430-7. PubMed ID: 24981192 [TBL] [Abstract][Full Text] [Related]
5. Systematically increasing contextual interference is beneficial for learning sport skills. Porter JM; Magill RA J Sports Sci; 2010 Oct; 28(12):1277-85. PubMed ID: 20845219 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of speed-accuracy trade-off in a computer task in individuals with cerebral palsy: a cross-sectional study. Fernani DCGL; Prado MTA; da Silva TD; Massetti T; de Abreu LC; Magalhães FH; Dawes H; de Mello Monteiro CB BMC Neurol; 2017 Jul; 17(1):143. PubMed ID: 28750603 [TBL] [Abstract][Full Text] [Related]
7. Effects of cognitive processes and task complexity on acquisition, retention, and transfer of motor skills. Jarus T; Gutman T Can J Occup Ther; 2001 Dec; 68(5):280-9. PubMed ID: 11765667 [TBL] [Abstract][Full Text] [Related]
8. Deficit in implicit motor sequence learning among children and adolescents with spastic cerebral palsy. Gofer-Levi M; Silberg T; Brezner A; Vakil E Res Dev Disabil; 2013 Nov; 34(11):3672-8. PubMed ID: 24012588 [TBL] [Abstract][Full Text] [Related]
9. Performance Variability During Motor Learning of a New Balance Task in a Non-immersive Virtual Environment in Children With Hemiplegic Cerebral Palsy and Typically Developing Peers. Cheng M; Anderson M; Levac DE Front Neurol; 2021; 12():623200. PubMed ID: 33790848 [No Abstract] [Full Text] [Related]
10. Effects of self-control and instructor-control feedback on motor learning in individuals with cerebral palsy. Hemayattalab R Res Dev Disabil; 2014 Nov; 35(11):2766-72. PubMed ID: 25086427 [TBL] [Abstract][Full Text] [Related]
11. Weight-supported training of the upper extremity in children with cerebral palsy: a motor learning study. Keller JW; van Hedel HJA J Neuroeng Rehabil; 2017 Aug; 14(1):87. PubMed ID: 28854939 [TBL] [Abstract][Full Text] [Related]
12. Variable training does not lead to better motor learning compared to repetitive training in children with and without DCD when exposed to active video games. Bonney E; Jelsma D; Ferguson G; Smits-Engelsman B Res Dev Disabil; 2017 Mar; 62():124-136. PubMed ID: 28157565 [TBL] [Abstract][Full Text] [Related]
13. Normative values and discriminative ability across functional levels of ACTIVLIM-CP, a measure of global activity performance for children with cerebral palsy. Paradis J; Arnould C; Bleyenheuft Y Disabil Rehabil; 2020 Sep; 42(19):2790-2796. PubMed ID: 30973788 [No Abstract] [Full Text] [Related]
14. Improving novel motor learning through prior high contextual interference training. Kim T; Chen J; Verwey WB; Wright DL Acta Psychol (Amst); 2018 Jan; 182():55-64. PubMed ID: 29136517 [TBL] [Abstract][Full Text] [Related]
15. In-Home Kicking-Activated Mobile Task to Motivate Selective Motor Control of Infants at High Risk of Cerebral Palsy: A Feasibility Study. Sargent B; Havens KL; Wisnowski JL; Wu TW; Kubo M; Fetters L Phys Ther; 2020 Dec; 100(12):2217-2226. PubMed ID: 32936921 [TBL] [Abstract][Full Text] [Related]
16. Win-shift, lose-stay: contingent switching and contextual interference in motor learning. Simon DA; Lee TD; Cullen JD Percept Mot Skills; 2008 Oct; 107(2):407-18. PubMed ID: 19093603 [TBL] [Abstract][Full Text] [Related]
17. Contextual interference effects with two tasks. Simon DA Percept Mot Skills; 2007 Aug; 105(1):177-83. PubMed ID: 17918561 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of different extrinsic feedback forms on motor learning in children with cerebral palsy: a systematic review. Schoenmaker J; Houdijk H; Steenbergen B; Reinders-Messelink HA; Schoemaker MM Disabil Rehabil; 2023 Apr; 45(8):1271-1284. PubMed ID: 35416108 [TBL] [Abstract][Full Text] [Related]
19. Effects of frequency of feedback on the learning of motor skill in individuals with cerebral palsy. Hemayattalab R; Rostami LR Res Dev Disabil; 2010; 31(1):212-7. PubMed ID: 19864110 [TBL] [Abstract][Full Text] [Related]
20. Effect of Contextual Interference in the Practicing of a Computer Task in Individuals Poststroke. Moliterno AH; Bezerra FV; Pires LA; Roncolato SS; da Silva TD; Massetti T; Fernani DCGL; Magalhães FH; de Mello Monteiro CB; Dantas MTAP Biomed Res Int; 2020; 2020():2937285. PubMed ID: 32775414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]