These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28351822)

  • 1. Thermal decomposition of sewage sludge under N
    Hernández AB; Okonta F; Freeman N
    J Environ Manage; 2017 Jul; 196():560-568. PubMed ID: 28351822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere.
    Jindarom C; Meeyoo V; Rirksomboon T; Rangsunvigit P
    Chemosphere; 2007 Apr; 67(8):1477-84. PubMed ID: 17289108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.
    Chen J; Mu L; Cai J; Yao P; Song X; Yin H; Li A
    Bioresour Technol; 2015 Dec; 198():115-23. PubMed ID: 26386413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS.
    Magdziarz A; Werle S
    Waste Manag; 2014 Jan; 34(1):174-9. PubMed ID: 24238993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics, kinetics and thermal decomposition characteristics of sewage sludge during slow pyrolysis.
    Mphahlele K; Matjie RH; Osifo PO
    J Environ Manage; 2021 Apr; 284():112006. PubMed ID: 33535126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-chemical process with sewage sludge by using CO2.
    Kwon EE; Yi H; Kwon HH
    J Environ Manage; 2013 Oct; 128():435-40. PubMed ID: 23792821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel.
    Huang L; Liu J; He Y; Sun S; Chen J; Sun J; Chang K; Kuo J; Ning X
    Bioresour Technol; 2016 Oct; 218():631-42. PubMed ID: 27416513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing and optimizing (co-)pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates.
    Liu J; Huang L; Xie W; Kuo J; Buyukada M; Evrendilek F
    Bioresour Technol; 2019 Apr; 277():104-116. PubMed ID: 30660063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environment impact and bioenergy analysis on the microwave pyrolysis of WAS from food industry: Comparison of CO
    Mong GR; Liew CS; Chong WWF; Mohd Nor SA; Ng JH; Idris R; Chiong MC; Lim JW; Zakaria ZA; Woon KS
    J Environ Manage; 2022 Oct; 319():115665. PubMed ID: 35842993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochemical conversion of waste tyres-a review.
    Labaki M; Jeguirim M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9962-9992. PubMed ID: 27796970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.
    Xie W; Wen S; Liu J; Xie W; Kuo J; Lu X; Sun S; Chang K; Buyukada M; Evrendilek F
    Bioresour Technol; 2018 May; 255():88-95. PubMed ID: 29414178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermogravimetric Analysis of Textile Dyeing Sludge (TDS) in N₂/CO₂/O₂ Atmospheres and its Combustion Model with Coal.
    Zhuo Z; Liu J; Sun S; Kuo J; Sun J; Chang KL; Fu J
    Water Environ Res; 2018 Jan; 90(1):30-41. PubMed ID: 29268837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Waste Manag; 2015 Sep; 43():152-61. PubMed ID: 26066574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Song Y; Hu J; Liu J; Evrendilek F; Buyukada M
    J Hazard Mater; 2020 Dec; 400():123190. PubMed ID: 32947737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic study of heavy metals Cu and Zn removal during sewage sludge ash calcination in air and N
    Li R; Zhai Z; Li Y; Yang T; Chen Y
    J Hazard Mater; 2018 Apr; 347():227-232. PubMed ID: 29324322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere.
    Zaini IN; García López C; Pretz T; Yang W; Jönsson PG
    Waste Manag; 2019 Sep; 97():149-163. PubMed ID: 31447022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Torrefaction on Thermal and Kinetic Behavior of Kenaf during Its Pyrolysis and CO
    Lee BH; Trinh VT; Jeon CH
    ACS Omega; 2021 Apr; 6(14):9920-9927. PubMed ID: 33869972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge.
    Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA
    Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.