BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 2835188)

  • 1. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes.
    Gant TW; Rao DN; Mason RP; Cohen GM
    Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity of menadione and related quinones in freshly isolated rat hepatocytes: effects on thiol homeostasis and energy charge.
    Toxopeus C; van Holsteijn I; Thuring JW; Blaauboer BJ; Noordhoek J
    Arch Toxicol; 1993; 67(10):674-9. PubMed ID: 8135657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of toxicity of 2- and 5-hydroxy-1,4-naphthoquinone; absence of a role for redox cycling in the toxicity of 2-hydroxy-1,4-naphthoquinone to isolated hepatocytes.
    d'Arcy Doherty M; Rodgers A; Cohen GM
    J Appl Toxicol; 1987 Apr; 7(2):123-9. PubMed ID: 3624767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of thiol homeostasis and adenine nucleotide metabolism in the protective effects of fructose in quinone-induced cytotoxicity in rat hepatocytes.
    Toxopeus C; van Holsteijn I; de Winther MP; van den Dobbelsteen D; Horbach GJ; Blaauboer BJ; Noordhoek J
    Biochem Pharmacol; 1994 Nov; 48(9):1682-92. PubMed ID: 7980636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of toxicity of naphthoquinones to isolated hepatocytes.
    Miller MG; Rodgers A; Cohen GM
    Biochem Pharmacol; 1986 Apr; 35(7):1177-84. PubMed ID: 2421729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminating redox cycling and arylation pathways of reactive chemical toxicity in trout hepatocytes.
    Schmieder PK; Tapper MA; Kolanczyk RC; Hammermeister DE; Sheedy BR; Denny JS
    Toxicol Sci; 2003 Mar; 72(1):66-76. PubMed ID: 12604835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets.
    Seung SA; Lee JY; Lee MY; Park JS; Chung JH
    Chem Biol Interact; 1998 May; 113(2):133-44. PubMed ID: 9717514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes.
    Stubberfield CR; Cohen GM
    Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of oxidative processes in the cytotoxicity of substituted 1,4-naphthoquinones in isolated hepatocytes.
    Ross D; Thor H; Threadgill MD; Sandy MS; Smith MT; Moldéus P; Orrenius S
    Arch Biochem Biophys; 1986 Aug; 248(2):460-6. PubMed ID: 3017211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quinone toxicity in hepatocytes without oxidative stress.
    Rossi L; Moore GA; Orrenius S; O'Brien PJ
    Arch Biochem Biophys; 1986 Nov; 251(1):25-35. PubMed ID: 3789732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone toxicity in DT-diaphorase-efficient and -deficient colon carcinoma cell lines.
    Karczewski JM; Peters JG; Noordhoek J
    Biochem Pharmacol; 1999 Jan; 57(1):27-37. PubMed ID: 9920282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of quinone-induced platelet anti-aggregation with cytotoxicity.
    Kim SR; Lee JY; Lee MY; Chung SM; Bae ON; Chung JH
    Toxicol Sci; 2001 Jul; 62(1):176-82. PubMed ID: 11399805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The protective effect of sulfite on menadione- and diquat-induced cytotoxicity in isolated rat hepatocytes.
    Sun YP; Cotgreave IA; Lindeke B; Moldéus P
    Pharmacol Toxicol; 1990 May; 66(5):393-8. PubMed ID: 2371247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diethyldithiocarbamate (DEDC) enhances quinone mediated oxidative stress cytotoxicity in isolated hepatocytes by forming toxic quinone conjugates.
    Lauriault VV; Silva JM; O'Brien PJ
    Drug Metabol Drug Interact; 1989; 7(1):1-15. PubMed ID: 2561273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study.
    Takahashi N; Schreiber J; Fischer V; Mason RP
    Arch Biochem Biophys; 1987 Jan; 252(1):41-8. PubMed ID: 3028260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathionyl- and hydroxyl radical formation coupled to the redox transitions of 1,4-naphthoquinone bioreductive alkylating agents during glutathione two-electron reductive addition.
    Goin J; Gibson DD; McCay PB; Cadenas E
    Arch Biochem Biophys; 1991 Aug; 288(2):386-96. PubMed ID: 1654832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity.
    Wefers H; Sies H
    Arch Biochem Biophys; 1983 Jul; 224(2):568-78. PubMed ID: 6191666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes.
    Di Monte D; Ross D; Bellomo G; Eklöw L; Orrenius S
    Arch Biochem Biophys; 1984 Dec; 235(2):334-42. PubMed ID: 6097182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox cycling of o-naphthoquinones in trypanosomatids. Superoxide and hydrogen peroxide production.
    Molina Portela MP; Fernandez Villamil SH; Perissinotti LJ; Stoppani AO
    Biochem Pharmacol; 1996 Dec; 52(12):1875-82. PubMed ID: 8951346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The toxicity of menadione (2-methyl-1,4-naphthoquinone) and two thioether conjugates studied with isolated renal epithelial cells.
    Brown PC; Dulik DM; Jones TW
    Arch Biochem Biophys; 1991 Feb; 285(1):187-96. PubMed ID: 1990978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.