These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28351973)

  • 1. Model of brain activation predicts the neural collective influence map of the brain.
    Morone F; Roth K; Min B; Stanley HE; Makse HA
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3849-3854. PubMed ID: 28351973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding influential nodes for integration in brain networks using optimal percolation theory.
    Del Ferraro G; Moreno A; Min B; Morone F; Pérez-Ramírez Ú; Pérez-Cervera L; Parra LC; Holodny A; Canals S; Makse HA
    Nat Commun; 2018 Jun; 9(1):2274. PubMed ID: 29891915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence maximization in complex networks through optimal percolation.
    Morone F; Makse HA
    Nature; 2015 Aug; 524(7563):65-8. PubMed ID: 26131931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latching chains in K-nearest-neighbor and modular small-world networks.
    Song S; Yao H; Simonov AY
    Network; 2015; 26(1):1-24. PubMed ID: 25387273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular structure of functional networks in olfactory memory.
    Meunier D; Fonlupt P; Saive AL; Plailly J; Ravel N; Royet JP
    Neuroimage; 2014 Jul; 95():264-75. PubMed ID: 24662576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling in topological properties of brain networks.
    Singh SS; Khundrakpam B; Reid AT; Lewis JD; Evans AC; Ishrat R; Sharma BI; Singh RK
    Sci Rep; 2016 Apr; 6():24926. PubMed ID: 27112129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human connectome: a complex network.
    Sporns O
    Ann N Y Acad Sci; 2011 Apr; 1224():109-125. PubMed ID: 21251014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributive sources analysis: a measure of neural networks' contribution to brain activations.
    Beldzik E; Domagalik A; Daselaar S; Fafrowicz M; Froncisz W; Oginska H; Marek T
    Neuroimage; 2013 Aug; 76():304-12. PubMed ID: 23523811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks.
    Gallos LK; Makse HA; Sigman M
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2825-30. PubMed ID: 22308319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle.
    Tagliazucchi E; von Wegner F; Morzelewski A; Brodbeck V; Borisov S; Jahnke K; Laufs H
    Neuroimage; 2013 Apr; 70():327-39. PubMed ID: 23313420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The organization of physiological brain networks.
    Stam CJ; van Straaten EC
    Clin Neurophysiol; 2012 Jun; 123(6):1067-87. PubMed ID: 22356937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex modular structure of large-scale brain networks.
    Valencia M; Pastor MA; Fernández-Seara MA; Artieda J; Martinerie J; Chavez M
    Chaos; 2009 Jun; 19(2):023119. PubMed ID: 19566254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Network Spectral Robustness under Perturbations of the Underlying Graph.
    Rădulescu A
    Neural Comput; 2016 Jan; 28(1):1-44. PubMed ID: 26599715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rich club organization supports a diverse set of functional network configurations.
    Senden M; Deco G; de Reus MA; Goebel R; van den Heuvel MP
    Neuroimage; 2014 Aug; 96():174-82. PubMed ID: 24699017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modularity and robustness of frontal cortical networks.
    Chen G; Kang B; Lindsey J; Druckmann S; Li N
    Cell; 2021 Jul; 184(14):3717-3730.e24. PubMed ID: 34214471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity.
    Schmidt H; Petkov G; Richardson MP; Terry JR
    PLoS Comput Biol; 2014 Nov; 10(11):e1003947. PubMed ID: 25393751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain modularity controls the critical behavior of spontaneous activity.
    Russo R; Herrmann HJ; de Arcangelis L
    Sci Rep; 2014 Mar; 4():4312. PubMed ID: 24621482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular Brain Networks.
    Sporns O; Betzel RF
    Annu Rev Psychol; 2016; 67():613-40. PubMed ID: 26393868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive self-organization in a realistic neural network model.
    Meisel C; Gross T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061917. PubMed ID: 20365200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.