These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 28352111)

  • 1. Motivational neural circuits underlying reinforcement learning.
    Averbeck BB; Costa VD
    Nat Neurosci; 2017 Mar; 20(4):505-512. PubMed ID: 28352111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.
    Rothenhoefer KM; Costa VD; Bartolo R; Vicario-Feliciano R; Murray EA; Averbeck BB
    J Neurosci; 2017 Jul; 37(29):6902-6914. PubMed ID: 28626011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
    Costa VD; Dal Monte O; Lucas DR; Murray EA; Averbeck BB
    Neuron; 2016 Oct; 92(2):505-517. PubMed ID: 27720488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.
    Kato A; Morita K
    PLoS Comput Biol; 2016 Oct; 12(10):e1005145. PubMed ID: 27736881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI.
    Colas JT; Pauli WM; Larsen T; Tyszka JM; O'Doherty JP
    PLoS Comput Biol; 2017 Oct; 13(10):e1005810. PubMed ID: 29049406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothalamic Interactions with Large-Scale Neural Circuits Underlying Reinforcement Learning and Motivated Behavior.
    Averbeck BB; Murray EA
    Trends Neurosci; 2020 Sep; 43(9):681-694. PubMed ID: 32762959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The motivational role of the ventral striatum and amygdala in learning from gains and losses.
    Taswell CA; Janssen M; Murray EA; Averbeck BB
    Behav Neurosci; 2023 Aug; 137(4):268-280. PubMed ID: 37141014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drive and Reinforcement Circuitry in the Brain: Origins, Neurotransmitters, and Projection Fields.
    Wise RA; McDevitt RA
    Neuropsychopharmacology; 2018 Mar; 43(4):680-689. PubMed ID: 28984293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis.
    Chase HW; Kumar P; Eickhoff SB; Dombrovski AY
    Cogn Affect Behav Neurosci; 2015 Jun; 15(2):435-59. PubMed ID: 25665667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.
    Zsuga J; Biro K; Papp C; Tajti G; Gesztelyi R
    Behav Neurosci; 2016 Feb; 130(1):6-18. PubMed ID: 26795580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Working Memory Load Strengthens Reward Prediction Errors.
    Collins AGE; Ciullo B; Frank MJ; Badre D
    J Neurosci; 2017 Apr; 37(16):4332-4342. PubMed ID: 28320846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of Pavlovian Bias in Schizophrenia: Enhanced Effects in Clozapine-Administered Patients.
    Albrecht MA; Waltz JA; Cavanagh JF; Frank MJ; Gold JM
    PLoS One; 2016; 11(4):e0152781. PubMed ID: 27044008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of relevance on amygdala activation and association with the ventral striatum.
    Ousdal OT; Reckless GE; Server A; Andreassen OA; Jensen J
    Neuroimage; 2012 Aug; 62(1):95-101. PubMed ID: 22546319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal.
    Frank MJ; Claus ED
    Psychol Rev; 2006 Apr; 113(2):300-326. PubMed ID: 16637763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The indirect amygdala-dorsal striatum pathway mediates conditioned freezing: insights on emotional memory networks.
    Ferreira TL; Shammah-Lagnado SJ; Bueno OF; Moreira KM; Fornari RV; Oliveira MG
    Neuroscience; 2008 Apr; 153(1):84-94. PubMed ID: 18367339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reward representations and reward-related learning in the human brain: insights from neuroimaging.
    O'Doherty JP
    Curr Opin Neurobiol; 2004 Dec; 14(6):769-76. PubMed ID: 15582382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis.
    Strauss GP; Thaler NS; Matveeva TM; Vogel SJ; Sutton GP; Lee BG; Allen DN
    J Abnorm Psychol; 2015 Aug; 124(3):697-708. PubMed ID: 25894442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning.
    Zhu L; Mathewson KE; Hsu M
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1419-24. PubMed ID: 22307594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.