BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 2835244)

  • 1. Red blood cell sodium and potassium fluxes in psoriatic patients.
    Semplicini A; Mozzato MG; Rigon E; Parolin O; Samà B; Padovan S; Degan P; Peserico A; Pessina AC
    Eur J Clin Invest; 1988 Feb; 18(1):47-51. PubMed ID: 2835244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral effects of thyroid hormones: alteration of intracellular Na-concentration, ouabain-sensitive Na-transport, and Na-Li countertransport in human red blood cells.
    Sütterlin U; Gless KH; Schaz K; Hüfner M; Schütz V; Hunstein W
    Klin Wochenschr; 1984 Jun; 62(12):598-601. PubMed ID: 6090760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell membrane cation transport in normotensive psoriatics.
    Mozzato MG; Semplicini A; Grosso G; Ceolotto G; Marzola M; Pessina AC; Peserico A
    Acta Derm Venereol Suppl (Stockh); 1989; 146():45-7. PubMed ID: 2609881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between altered Na+--K+ cotransport and Na+--Li+ countertransport in the erythrocytes of 'essential' hypertensive patients.
    Cusi D; Barlassina C; Ferrandi M; Palazzi P; Celega E; Bianchi G
    Clin Sci (Lond); 1981 Dec; 61 Suppl 7():33s-36s. PubMed ID: 7318333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane cation fluxes and fatty acid composition of erythrocytes in psoriatic patients.
    Corrocher R; Bassi A; Gandini A; Guarini P; Trevisan MT; Schena D; Olivieri O; Ferrari S
    Clin Chim Acta; 1990 Jan; 186(3):335-44. PubMed ID: 1690095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of erythrocyte Na transport pathway(s) by excess Na intake.
    Dagher G; Brossard M; Feray JC; Garay RP
    Life Sci; 1985 Jul; 37(3):243-53. PubMed ID: 2989644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium transport in red blood cells from dialyzed uremic patients.
    Corry DB; Tuck ML; Brickman AS; Yanagawa N; Lee DB
    Kidney Int; 1986 Jun; 29(6):1197-202. PubMed ID: 3018347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane cationic fluxes in erythrocytes of diabetics and normal men.
    Lijnen P; Fenyvesi A
    Methods Find Exp Clin Pharmacol; 1994; 16(1):37-47. PubMed ID: 8164472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte sodium fluxes, ouabain binding sites, and Na+,K(+)-ATPase activity in hyperthyroidism.
    Arumanayagam M; MacDonald D; Cockram CS; Swaminathan R
    Metabolism; 1990 Sep; 39(9):952-7. PubMed ID: 2168011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte sodium-lithium countertransport in non-modulating offspring and essential hypertensive individuals: response to enalapril.
    Sánchez RA; Giménez MI; Migliorini M; Giannone C; Ramírez AJ; Weder AB
    Hypertension; 1997 Jul; 30(1 Pt 1):99-105. PubMed ID: 9231828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotransport of lithium and potassium in human red cells.
    Canessa M; Bize I; Adragna N; Tosteson D
    J Gen Physiol; 1982 Jul; 80(1):149-68. PubMed ID: 7119728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased inward passive permeability in vitro to sodium in uraemic erythrocytes.
    Corry DB; Ellis CC; Tuck ML
    Clin Sci (Lond); 1996 Jan; 90(1):3-8. PubMed ID: 8697702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Familial aggregation of cation transport abnormalities and essential hypertension.
    Cusi D; Barlassina C; Ferrandi M; Lupi P; Ferrari P; Bianchi G
    Clin Exp Hypertens (1978); 1981; 3(4):871-84. PubMed ID: 7297328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte sodium ion transport system in DOC-salt, Goldblatt, and spontaneously hypertensive rats.
    Yokomatsu M; Fujito K; Numahata H; Koide H
    Scand J Clin Lab Invest; 1992 Oct; 52(6):497-506. PubMed ID: 1329186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol modulation of transmembrane cation transport systems in human erythrocytes.
    Lijnen P; Petrov V
    Biochem Mol Med; 1995 Oct; 56(1):52-62. PubMed ID: 8593538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of erythrocyte Na(+)-K(+)-Cl- cotransport activity by enalapril.
    Sanchez RA; Gimenez MI; Gilbert BH; Giannone C; Marco EJ; Ramirez AJ
    Hypertension; 1991 Mar; 17(3):334-9. PubMed ID: 1999365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodological assessment of assays for intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of man.
    Lijnen P; Groeseneken D; Laermans M; Lommelen G; Piccart Y; Amery A
    Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):293-301. PubMed ID: 6087051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for bumetanide-sensitive, Na(+)-dependent, partial Na-K-Cl co-transport in red blood cells of a primitive fish.
    Ellory JC; Wolowyk MW
    Can J Physiol Pharmacol; 1991 May; 69(5):588-91. PubMed ID: 1863908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormalities of erythrocyte sodium transport systems in Bartter's syndrome.
    Sechi LA; Melis A; Bartoli E
    Am J Nephrol; 1992; 12(3):137-43. PubMed ID: 1329511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of ouabain-insensitive red blood cell cation transport in uremic patients.
    Boero R; Quarello F; Guarena C; Piccoli G
    Boll Soc Ital Biol Sper; 1985 Feb; 61(2):243-8. PubMed ID: 3994843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.