BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28352564)

  • 1. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies.
    Gupta P; Diwan B
    Biotechnol Rep (Amst); 2017 Mar; 13():58-71. PubMed ID: 28352564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospective of Microbial Exopolysaccharide for Heavy Metal Exclusion.
    Mohite BV; Koli SH; Narkhede CP; Patil SN; Patil SV
    Appl Biochem Biotechnol; 2017 Oct; 183(2):582-600. PubMed ID: 28889346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation.
    Pal A; Paul AK
    Indian J Microbiol; 2008 Mar; 48(1):49-64. PubMed ID: 23100700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into biosorption of heavy metals by extracellular polymer substances and the improvement of the efficacy: a review.
    Li C; Yu Y; Fang A; Feng D; Du M; Tang A; Chen S; Li A
    Lett Appl Microbiol; 2022 Nov; 75(5):1064-1073. PubMed ID: 34562275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular polymeric substances of bacteria and their potential environmental applications.
    More TT; Yadav JS; Yan S; Tyagi RD; Surampalli RY
    J Environ Manage; 2014 Nov; 144():1-25. PubMed ID: 24907407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring biosynthesis strategies to boost the yield of exopolysaccharide-protein blend from Bacillus arachidis SY8(T), an isolated native strain, as a potent adsorbent for heavy metals removal.
    Hosseini SP; Mousavi SM; Jafari A
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132634. PubMed ID: 38797297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of an exopolysaccharide produced by
    Dhanya BE; Athmika ; Rekha PD
    3 Biotech; 2021 Dec; 11(12):491. PubMed ID: 34790515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals.
    Zeng W; Li F; Wu C; Yu R; Wu X; Shen L; Liu Y; Qiu G; Li J
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):153-167. PubMed ID: 31549306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.
    Ayangbenro AS; Babalola OO
    Int J Environ Res Public Health; 2017 Jan; 14(1):. PubMed ID: 28106848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of exopolysaccharide production from Pseudomonas stutzeri AS22 and examination of its metal-binding abilities.
    Maalej H; Hmidet N; Boisset C; Buon L; Heyraud A; Nasri M
    J Appl Microbiol; 2015 Feb; 118(2):356-67. PubMed ID: 25376444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans.
    Mohite BV; Koli SH; Patil SV
    Appl Biochem Biotechnol; 2018 Sep; 186(1):199-216. PubMed ID: 29552714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial extracellular polymeric substances: Impact on soil microbial community composition and their potential role in heavy metal-contaminated soil.
    Li Y; Shi X; Ling Q; Li S; Wei J; Xin M; Xie D; Chen X; Liu K; Yu F
    Ecotoxicol Environ Saf; 2022 Jul; 240():113701. PubMed ID: 35636237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review.
    Igiri BE; Okoduwa SIR; Idoko GO; Akabuogu EP; Adeyi AO; Ejiogu IK
    J Toxicol; 2018; 2018():2568038. PubMed ID: 30363677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc toxicity stimulates microbial production of extracellular polymers in a copiotrophic acid soil.
    Redmile-Gordon M; Chen L
    Int Biodeterior Biodegradation; 2017 Apr; 119():413-418. PubMed ID: 28413265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants.
    Mehta K; Shukla A; Saraf M
    Heliyon; 2021 Nov; 7(11):e08446. PubMed ID: 34877428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.
    Yan P; Xia JS; Chen YP; Liu ZP; Guo JS; Shen Y; Zhang CC; Wang J
    Bioresour Technol; 2017 May; 232():354-363. PubMed ID: 28249189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites.
    Mota R; Rossi F; Andrenelli L; Pereira SB; De Philippis R; Tamagnini P
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7765-75. PubMed ID: 27188779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal biosorption by Extracellular Polymeric Substances (EPS) recovered from anammox granular sludge.
    Pagliaccia B; Carretti E; Severi M; Berti D; Lubello C; Lotti T
    J Hazard Mater; 2022 Feb; 424(Pt C):126661. PubMed ID: 34315635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble Extracellular Polymeric Substances Produced by
    Ciempiel W; Czemierska M; Szymańska-Chargot M; Zdunek A; Wiącek D; Jarosz-Wilkołazka A; Krzemińska I
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36363977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of heavy metal-polluted environments by non-living cells from rhizobial isolates.
    Moretto C; Castellane TCL; Leonel TF; Campanharo JC; de Macedo Lemos EG
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):46953-46967. PubMed ID: 35178627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.