BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 28352611)

  • 1. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors.
    Morandi A; Taddei ML; Chiarugi P; Giannoni E
    Front Oncol; 2017; 7():40. PubMed ID: 28352611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming.
    Lai X; Li Q; Wu F; Lin J; Chen J; Zheng H; Guo L
    Front Cell Dev Biol; 2020; 8():760. PubMed ID: 32850862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation.
    Li L; Li W
    Pharmacol Ther; 2015 Jun; 150():33-46. PubMed ID: 25595324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines.
    Kondaveeti Y; Guttilla Reed IK; White BA
    Cancer Lett; 2015 Aug; 364(1):44-58. PubMed ID: 25917568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Reprogramming and Epithelial-Mesenchymal Plasticity: Opportunities and Challenges for Cancer Therapy.
    Sun NY; Yang MH
    Front Oncol; 2020; 10():792. PubMed ID: 32509584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Regulation of Epithelial to Mesenchymal Transition: Implications for Endocrine Cancer.
    Bhattacharya D; Scimè A
    Front Endocrinol (Lausanne); 2019; 10():773. PubMed ID: 31849832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential role of NDRG2 in reprogramming cancer metabolism and epithelial-to-mesenchymal transition.
    Chen XL; Lei L; Hong LL; Ling ZQ
    Histol Histopathol; 2018 Jul; 33(7):655-663. PubMed ID: 29285747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial-Mesenchymal Transition Program.
    Aguilar E; Marin de Mas I; Zodda E; Marin S; Morrish F; Selivanov V; Meca-Cortés Ó; Delowar H; Pons M; Izquierdo I; Celià-Terrassa T; de Atauri P; Centelles JJ; Hockenbery D; Thomson TM; Cascante M
    Stem Cells; 2016 May; 34(5):1163-76. PubMed ID: 27146024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT).
    Kang H; Kim H; Lee S; Youn H; Youn B
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31027222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pan-Cancer Analysis Reveals Distinct Metabolic Reprogramming in Different Epithelial-Mesenchymal Transition Activity States.
    Sung JY; Cheong JH
    Cancers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epithelial-to-Mesenchymal Transition: Epigenetic Reprogramming Driving Cellular Plasticity.
    Skrypek N; Goossens S; De Smedt E; Vandamme N; Berx G
    Trends Genet; 2017 Dec; 33(12):943-959. PubMed ID: 28919019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMT Factors and Metabolic Pathways in Cancer.
    Georgakopoulos-Soares I; Chartoumpekis DV; Kyriazopoulou V; Zaravinos A
    Front Oncol; 2020; 10():499. PubMed ID: 32318352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis.
    Chen T; You Y; Jiang H; Wang ZZ
    J Cell Physiol; 2017 Dec; 232(12):3261-3272. PubMed ID: 28079253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Metabolic Vulnerabilities of Epithelial-Mesenchymal Transition in Breast Cancer.
    Sun X; Wang M; Wang M; Yao L; Li X; Dong H; Li M; Li X; Liu X; Xu Y
    Front Cell Dev Biol; 2020; 8():655. PubMed ID: 32793598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT).
    Cho ES; Kang HE; Kim NH; Yook JI
    Arch Pharm Res; 2019 Jan; 42(1):14-24. PubMed ID: 30649699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype.
    Hiew MSY; Cheng HP; Huang CJ; Chong KY; Cheong SK; Choo KB; Kamarul T
    J Biomed Sci; 2018 Jul; 25(1):57. PubMed ID: 30025541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolic metabolism during cancer EMT.
    Cha YH; Yook JI; Kim HS; Kim NH
    Arch Pharm Res; 2015 Mar; 38(3):313-20. PubMed ID: 25634102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma.
    Liu M; Quek LE; Sultani G; Turner N
    Cancer Metab; 2016; 4():19. PubMed ID: 27777765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors.
    Su Y; Hopfinger NR; Nguyen TD; Pogash TJ; Santucci-Pereira J; Russo J
    J Exp Clin Cancer Res; 2018 Dec; 37(1):314. PubMed ID: 30547810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities.
    Kahlert UD; Joseph JV; Kruyt FAE
    Mol Oncol; 2017 Jul; 11(7):860-877. PubMed ID: 28556516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.