These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 2835263)
21. Role of the modulator protein in the interconversion of rabbit skeletal muscle protein phosphatase. Vandenheede JR; Yang SD; Merlevede W Biochem Biophys Res Commun; 1983 Sep; 115(3):871-7. PubMed ID: 6313000 [TBL] [Abstract][Full Text] [Related]
22. The protein phosphatases involved in cellular regulation. 2. Purification, subunit structure and properties of protein phosphatases-2A0, 2A1, and 2A2 from rabbit skeletal muscle. Tung HY; Alemany S; Cohen P Eur J Biochem; 1985 Apr; 148(2):253-63. PubMed ID: 2985385 [TBL] [Abstract][Full Text] [Related]
23. Reconstitution of a Mg-ATP-dependent protein phosphatase and its activation through a phosphorylation mechanism. Hemmings BA; Resink TJ; Cohen P FEBS Lett; 1982 Dec; 150(2):319-24. PubMed ID: 6297978 [TBL] [Abstract][Full Text] [Related]
24. Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Cayla X; Goris J; Hermann J; Hendrix P; Ozon R; Merlevede W Biochemistry; 1990 Jan; 29(3):658-67. PubMed ID: 2159785 [TBL] [Abstract][Full Text] [Related]
25. On the mechanism of regulation of type I phosphoprotein phosphatase from bovine heart. Regulation by a novel intracyclic activation-deactivation mechanism via transient phosphorylation of the regulatory subunit by phosphatase-1 kinase (FA). Li HC; Price DJ; Tabarini D J Biol Chem; 1985 May; 260(10):6416-26. PubMed ID: 2987222 [TBL] [Abstract][Full Text] [Related]
26. Fluorine compounds inhibit the conversion of active type-1 protein phosphatases into the ATPMg-dependent form. Bollen M; Stalmans W Biochem J; 1988 Oct; 255(1):327-33. PubMed ID: 2848509 [TBL] [Abstract][Full Text] [Related]
27. Role of the deinhibitor protein in the interconversion of the ATP,Mg-dependent protein phosphatase. Goris J; Waelkens E; Merlevede W Biochem Biophys Res Commun; 1983 Oct; 116(1):349-54. PubMed ID: 6315009 [TBL] [Abstract][Full Text] [Related]
28. Purification of a latent protein phosphatase from rabbit skeletal muscle. Yang SD; Vandenheede JR; Merlevede W Biochem Biophys Res Commun; 1984 Feb; 118(3):923-8. PubMed ID: 6322769 [TBL] [Abstract][Full Text] [Related]
29. Purification and characterization of the polycation-stimulated protein phosphatase catalytic subunit from porcine renal cortex. Schlender KK; Wilson SE; Mellgren RL Biochim Biophys Acta; 1986 Jul; 872(1-2):1-10. PubMed ID: 3015214 [TBL] [Abstract][Full Text] [Related]
30. The control of phosphorylase kinase phosphatase activity by polycations and the deinhibitor protein. Goris J; Walsh DA; Merlevede W Biochem Biophys Res Commun; 1984 Nov; 125(1):293-8. PubMed ID: 6095839 [TBL] [Abstract][Full Text] [Related]
31. On the mechanism of activation of rabbit skeletal muscle ATP-Mg-dependent protein phosphatase. Yang SD; Vandenheede JR; Merlevede W FEBS Lett; 1981 Apr; 126(1):57-60. PubMed ID: 6263688 [No Abstract] [Full Text] [Related]
32. Conversion of active protein phosphatase to the ATP-Mg-dependent enzyme form by inhibitor-2. Vandenheede JR; Goris J; Yang SD; Camps T; Merlevede W FEBS Lett; 1981 May; 127(1):1-3. PubMed ID: 6265276 [No Abstract] [Full Text] [Related]
33. Protein phosphatase type-1 and type-2 catalytic subunits both bind inhibitor-2 and monoclonal immunoglobulins. Brautigan DL; Gruppuso PA; Mumby M J Biol Chem; 1986 Nov; 261(32):14924-8. PubMed ID: 3021755 [TBL] [Abstract][Full Text] [Related]
34. Dephosphorylation of the deinhibitor protein by the PCSH protein phosphatase. Goris J; Waelkens E; Merlevede W FEBS Lett; 1985 Sep; 188(2):262-6. PubMed ID: 2993024 [TBL] [Abstract][Full Text] [Related]
35. The ATP, Mg-dependent regulation of a multisubstrate protein phosphatase from rabbit skeletal muscle. Vandenheede JR; Yang SD; Goris J; Merlevede W Prog Clin Biol Res; 1982; 102 Pt C():193-201. PubMed ID: 6300927 [No Abstract] [Full Text] [Related]
36. Activation of bovine heart ATP-MG2+-dependent phosphoprotein phosphatase: isolation of a phosphoenzyme intermediate and its conversion to the active form via a Mg2+-dependent autodephosphorylation reaction. Price DJ; Li HC Biochem Biophys Res Commun; 1985 May; 128(3):1203-10. PubMed ID: 2988531 [TBL] [Abstract][Full Text] [Related]
37. Protein inhibitors of dog-liver phosphorylase phosphatase dependent on and independent of protein kinase. Goris J; Defreyn G; Vandenheede JR; Merlevede W Eur J Biochem; 1978 Nov; 91(2):457-64. PubMed ID: 215404 [No Abstract] [Full Text] [Related]
38. Specific association of calmodulin-dependent protein kinase and related substrates with the junctional sarcoplasmic reticulum of skeletal muscle. Chu A; Sumbilla C; Inesi G; Jay SD; Campbell KP Biochemistry; 1990 Jun; 29(25):5899-905. PubMed ID: 2166564 [TBL] [Abstract][Full Text] [Related]
39. A 60 kDa polypeptide of skeletal-muscle sarcoplasmic reticulum is a calmodulin-dependent protein kinase that associates with and phosphorylates several membrane proteins. Leddy JJ; Murphy BJ; Qu-Yi ; Doucet JP; Pratt C; Tuana BS Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):849-56. PubMed ID: 8240301 [TBL] [Abstract][Full Text] [Related]
40. Regulation by phosphorylase kinase of phosphoprotein phosphatase activity: simultaneous control of protein phosphorylation and dephosphorylation in skeletal muscle. Gergely P; Bot G Acta Biochim Biophys Acad Sci Hung; 1981; 16(3-4):163-78. PubMed ID: 6291302 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]