These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2835269)

  • 1. Mutual inactivation of valinomycin and protonophores by complex formation in liposomal membranes.
    Krishnamoorthy G
    FEBS Lett; 1988 May; 232(1):199-203. PubMed ID: 2835269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile-mediated proton uptake in liposomes. Kinetics of proton uptake compensated by valinomycin-induced K+-efflux.
    Yamaguchi A; Anraku Y
    Biochim Biophys Acta; 1978 Jan; 501(1):136-49. PubMed ID: 23155
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1996 Jul; 1282(2):193-9. PubMed ID: 8703973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K+-valinomycin and chloride conductance of the human red cell membrane. Influence of the membrane protonophore carbonylcyanide m-chlorophenylhydrazone.
    Bennekou P
    Biochim Biophys Acta; 1984 Sep; 776(1):1-9. PubMed ID: 6477898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flux ratio of valinomycin-mediated K+ fluxes across the human red cell membrane in the presence of the protonophore CCCP.
    Bennekou P; Christophersen P
    J Membr Biol; 1986; 93(3):221-7. PubMed ID: 3820279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of the electrogenic ionophores, valinomycin and CCCP, can lead to non-electrogenic K+/H+ exchange on bilayer lipid membranes.
    Orlov VN; Antonenko YN; Bulychev AA; Yaguzhinsky LS
    FEBS Lett; 1994 May; 345(2-3):104-6. PubMed ID: 7515356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ionophores on the phospholipid flippase activity of gastric vesicles.
    Suzuki H; Morii M; Takeguchi N
    Jpn J Physiol; 1999 Oct; 49(5):431-6. PubMed ID: 10603427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry.
    Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S
    Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes.
    Sun X; Garlid KD
    J Biol Chem; 1992 Sep; 267(27):19147-54. PubMed ID: 1382068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport.
    Winkler E; Klingenberg M
    Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus.
    Friedberg I
    FEBS Lett; 1977 Sep; 81(2):264-6. PubMed ID: 21813
    [No Abstract]   [Full Text] [Related]  

  • 13. Second harmonic studies of ions crossing liposome membranes in real time.
    Liu J; Subir M; Nguyen K; Eisenthal KB
    J Phys Chem B; 2008 Dec; 112(48):15263-6. PubMed ID: 18989915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition.
    Morota S; Piel S; Hansson MJ
    BMC Cell Biol; 2013 Sep; 14():40. PubMed ID: 24053891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ionophores and dicyclohexylcarbodiimide on Mycoplasma gallisepticum adherence to erythrocytes.
    Banai M; Razin S; Schuldiner S; Zilberstein D; Kahane I; Bredt W
    Infect Immun; 1982 Oct; 38(1):189-94. PubMed ID: 7141689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an ATP-driven proton pump in rat thyroid phagolysosomes. Effects of protonophores and ionophores.
    Fouchier F; Dang J
    Eur J Biochem; 1983 Nov; 136(3):553-7. PubMed ID: 6315434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile. Effects of pH on its binding to liposomes and evidence for formation of a ternary complex with valinomycin and potassium ion.
    Yamaguchi A; Anraku Y; Ikegami S
    Biochim Biophys Acta; 1978 Jan; 501(1):150-64. PubMed ID: 23156
    [No Abstract]   [Full Text] [Related]  

  • 18. The K(+)-ionophores nonactin and valinomycin interact differently with the protein of reconstituted cytochrome c oxidase.
    Steverding D; Kadenbach B
    J Bioenerg Biomembr; 1990 Apr; 22(2):197-205. PubMed ID: 2158497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP synthesis by an uncoupler-resistant mutant of Bacillus megaterium.
    Guffanti AA; Blumenfeld H; Krulwich TA
    J Biol Chem; 1981 Aug; 256(16):8416-21. PubMed ID: 6790540
    [No Abstract]   [Full Text] [Related]  

  • 20. Steady-state and transient membrane potentials in human red cells determined by protonophore-mediated pH changes.
    Bennekou P
    J Membr Biol; 1988 Nov; 106(1):41-6. PubMed ID: 3225839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.