These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28352892)

  • 1. Unique perforated graphene derived from Bougainvillea flowers for high-power supercapacitors: a green approach.
    Panmand RP; Patil P; Sethi Y; Kadam SR; Kulkarni MV; Gosavi SW; Munirathnam NR; Kale BB
    Nanoscale; 2017 Apr; 9(14):4801-4809. PubMed ID: 28352892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.
    Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y
    Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors.
    El-Gendy DM; Ghany NA; El Sherbini EE; Allam NK
    Sci Rep; 2017 Feb; 7():43104. PubMed ID: 28216668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchically nanoperforated graphene as a high performance electrode material for ultracapacitors.
    Mhamane D; Suryawanshi A; Unni SM; Rode C; Kurungot S; Ogale S
    Small; 2013 Aug; 9(16):2801-9. PubMed ID: 23606525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors.
    Qu Q; Yang S; Feng X
    Adv Mater; 2011 Dec; 23(46):5574-80. PubMed ID: 22052661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids.
    Peng C; Wen Z; Qin Y; Schmidt-Mende L; Li C; Yang S; Shi D; Yang J
    ChemSusChem; 2014 Mar; 7(3):777-84. PubMed ID: 24474720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.
    Zhang H; Yu X; Guo D; Qu B; Zhang M; Li Q; Wang T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7335-40. PubMed ID: 23751359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.
    You B; Li N; Zhu H; Zhu X; Yang J
    ChemSusChem; 2013 Mar; 6(3):474-80. PubMed ID: 23417925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: Unique perforated graphene derived from Bougainvillea flowers for high-power supercapacitors: a green approach.
    Panmand RP; Patil P; Sethi Y; Kadam SR; Kulkarni MV; Gosavi SW; Munirathnam NR; Kale BB
    Nanoscale; 2018 Nov; 10(46):22065. PubMed ID: 30430183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology Effect of Vertical Graphene on the High Performance of Supercapacitor Electrode.
    Zhang Y; Zou Q; Hsu HS; Raina S; Xu Y; Kang JB; Chen J; Deng S; Xu N; Kang WP
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7363-9. PubMed ID: 26927820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycle-Life Supercapacitors.
    Jiao X; Hao Q; Xia X; Lei W; Ouyang Y; Ye H; Mandler D
    ChemSusChem; 2018 Mar; 11(5):907-915. PubMed ID: 29388379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors.
    Zhang L; Zhang F; Yang X; Long G; Wu Y; Zhang T; Leng K; Huang Y; Ma Y; Yu A; Chen Y
    Sci Rep; 2013; 3():1408. PubMed ID: 23474952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer by layer assembly of ultrathin V₂O₅ anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes.
    Shakir I; Ali Z; Bae J; Park J; Kang DJ
    Nanoscale; 2014 Apr; 6(8):4125-30. PubMed ID: 24604248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes.
    Shen J; Yang C; Li X; Wang G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.
    Dubal DP; Chodankar NR; Vinu A; Kim DH; Gomez-Romero P
    ChemSusChem; 2017 Jul; 10(13):2742-2750. PubMed ID: 28523755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus-doped exfoliated graphene for supercapacitor electrodes.
    Karthika P; Rajalakshmi N; Dhathathreyan KS
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1746-51. PubMed ID: 23755584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.