These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 28353001)
1. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae. Gottardi M; Knudsen JD; Prado L; Oreb M; Branduardi P; Boles E Appl Microbiol Biotechnol; 2017 Jun; 101(12):4883-4893. PubMed ID: 28353001 [TBL] [Abstract][Full Text] [Related]
2. Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product. Gottardi M; Grün P; Bode HB; Hoffmann T; Schwab W; Oreb M; Boles E FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29186481 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach. Liu Z; Zhang X; Lei D; Qiao B; Zhao GR Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose. Yin H; Hu T; Zhuang Y; Liu T Microb Cell Fact; 2020 Nov; 19(1):218. PubMed ID: 33243241 [TBL] [Abstract][Full Text] [Related]
6. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Hansen EH; Møller BL; Kock GR; Bünner CM; Kristensen C; Jensen OR; Okkels FT; Olsen CE; Motawia MS; Hansen J Appl Environ Microbiol; 2009 May; 75(9):2765-74. PubMed ID: 19286778 [TBL] [Abstract][Full Text] [Related]
7. Production of Cinnamyl Alcohol Glucoside from Glucose in Escherichia coli. Zhou W; Bi H; Zhuang Y; He Q; Yin H; Liu T; Ma Y J Agric Food Chem; 2017 Mar; 65(10):2129-2135. PubMed ID: 28229589 [TBL] [Abstract][Full Text] [Related]
8. Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids. Kukil K; Lindberg P Microb Cell Fact; 2022 Jan; 21(1):8. PubMed ID: 35012528 [TBL] [Abstract][Full Text] [Related]
9. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. Gottardi M; Reifenrath M; Boles E; Tripp J FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489 [TBL] [Abstract][Full Text] [Related]
10. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545 [TBL] [Abstract][Full Text] [Related]
11. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082 [TBL] [Abstract][Full Text] [Related]
12. Cross-sensitization patterns in guinea pigs between cinnamaldehyde, cinnamyl alcohol and cinnamic acid. Weibel H; Hansen J; Andersen KE Acta Derm Venereol; 1989; 69(4):302-7. PubMed ID: 2568047 [TBL] [Abstract][Full Text] [Related]
13. Li Y; Mao J; Liu Q; Song X; Wu Y; Cai M; Xu H; Qiao M ACS Synth Biol; 2020 Apr; 9(4):756-765. PubMed ID: 32155331 [TBL] [Abstract][Full Text] [Related]
14. Production of Cinnamaldehyde through Whole-Cell Bioconversion from Son J; Choi IH; Lim CG; Jang JH; Bang HB; Cha JW; Jeon EJ; Sohn MG; Yun HJ; Kim SC; Jeong KJ J Agric Food Chem; 2022 Mar; 70(8):2656-2663. PubMed ID: 35102737 [TBL] [Abstract][Full Text] [Related]
15. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106 [TBL] [Abstract][Full Text] [Related]
16. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids.: Part II: Application in different reactor concepts for the production of (S)-2-chloro-phenylalanine. Dreßen A; Hilberath T; Mackfeld U; Rudat J; Pohl M J Biotechnol; 2017 Sep; 258():158-166. PubMed ID: 28472673 [TBL] [Abstract][Full Text] [Related]
17. De Novo Biosynthesis of Li Y; Li J; Qian B; Cheng L; Xu S; Wang R Molecules; 2018 Dec; 23(12):. PubMed ID: 30513965 [No Abstract] [Full Text] [Related]
18. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. Fujiwara R; Noda S; Tanaka T; Kondo A J Biosci Bioeng; 2016 Dec; 122(6):730-735. PubMed ID: 27405271 [TBL] [Abstract][Full Text] [Related]
19. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from L-Phenylalanine. Zang Y; Jiang T; Cong Y; Zheng Z; Ouyang J Appl Biochem Biotechnol; 2015 Jun; 176(3):924-37. PubMed ID: 25947617 [TBL] [Abstract][Full Text] [Related]
20. Producing Gram-Scale Unnatural Rosavin Analogues from Glucose by Engineered Bi H; Wang S; Zhou W; Zhuang Y; Liu T ACS Synth Biol; 2019 Aug; 8(8):1931-1940. PubMed ID: 31291541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]