These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 28353133)
1. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Abbas Q; Fondon I; Sarmiento A; Jiménez S; Alemany P Med Biol Eng Comput; 2017 Nov; 55(11):1959-1974. PubMed ID: 28353133 [TBL] [Abstract][Full Text] [Related]
2. Automatic detection of microaneurysms in retinal fundus images. Wu B; Zhu W; Shi F; Zhu S; Chen X Comput Med Imaging Graph; 2017 Jan; 55():106-112. PubMed ID: 27595214 [TBL] [Abstract][Full Text] [Related]
4. Automated Identification of Diabetic Retinopathy Using Deep Learning. Gargeya R; Leng T Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404 [TBL] [Abstract][Full Text] [Related]
6. An automated retinal imaging method for the early diagnosis of diabetic retinopathy. Franklin SW; Rajan SE Technol Health Care; 2013; 21(6):557-69. PubMed ID: 24284549 [TBL] [Abstract][Full Text] [Related]
7. Computer-based detection of diabetes retinopathy stages using digital fundus images. Acharya UR; Lim CM; Ng EY; Chee C; Tamura T Proc Inst Mech Eng H; 2009 Jul; 223(5):545-53. PubMed ID: 19623908 [TBL] [Abstract][Full Text] [Related]
8. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Asiri N; Hussain M; Al Adel F; Alzaidi N Artif Intell Med; 2019 Aug; 99():101701. PubMed ID: 31606116 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
10. Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images. Sopharak A; Uyyanonvara B; Barman S Comput Med Imaging Graph; 2013; 37(5-6):394-402. PubMed ID: 23777979 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading. Sahlsten J; Jaskari J; Kivinen J; Turunen L; Jaanio E; Hietala K; Kaski K Sci Rep; 2019 Jul; 9(1):10750. PubMed ID: 31341220 [TBL] [Abstract][Full Text] [Related]
12. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Liu YP; Li Z; Xu C; Li J; Liang R Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108 [TBL] [Abstract][Full Text] [Related]
13. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System. Jaya T; Dheeba J; Singh NA J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397 [TBL] [Abstract][Full Text] [Related]
14. Computer-aided diagnosis of diabetic retinopathy: a review. Mookiah MR; Acharya UR; Chua CK; Lim CM; Ng EY; Laude A Comput Biol Med; 2013 Dec; 43(12):2136-55. PubMed ID: 24290931 [TBL] [Abstract][Full Text] [Related]
15. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Köse C; Sevik U; Ikibaş C; Erdöl H Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250 [TBL] [Abstract][Full Text] [Related]
16. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images. Kadan AB; Subbian PS J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041 [TBL] [Abstract][Full Text] [Related]
17. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058 [TBL] [Abstract][Full Text] [Related]
18. Fully automated diabetic retinopathy screening using morphological component analysis. Imani E; Pourreza HR; Banaee T Comput Med Imaging Graph; 2015 Jul; 43():78-88. PubMed ID: 25863517 [TBL] [Abstract][Full Text] [Related]
19. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289 [TBL] [Abstract][Full Text] [Related]
20. CauDR: A causality-inspired domain generalization framework for fundus-based diabetic retinopathy grading. Wei H; Shi P; Miao J; Zhang M; Bai G; Qiu J; Liu F; Yuan W Comput Biol Med; 2024 Jun; 175():108459. PubMed ID: 38701588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]