BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 28353266)

  • 1. Improved Sendai viral system for reprogramming to naive pluripotency.
    Kunitomi A; Hirohata R; Arreola V; Osawa M; Kato TM; Nomura M; Kawaguchi J; Hara H; Kusano K; Takashima Y; Takahashi K; Fukuda K; Takasu N; Yamanaka S
    Cell Rep Methods; 2022 Nov; 2(11):100317. PubMed ID: 36447645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An optimized Sendai viral vector platform for reprogramming to naive pluripotency.
    Charlesworth CT; Nakauchi H
    Cell Rep Methods; 2022 Nov; 2(11):100349. PubMed ID: 36452874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Induced Pluripotent Stem Cell Production and Expansion from Blood using a Non-Integrating Viral Reprogramming Vector.
    Sharma A; Mücke M; Seidman CE
    Curr Protoc Mol Biol; 2018 Apr; 122(1):e58. PubMed ID: 29851250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roadblocks en route to the clinical application of induced pluripotent stem cells.
    Lowry WE; Quan WL
    J Cell Sci; 2010 Mar; 123(Pt 5):643-51. PubMed ID: 20164303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reprogramming of somatic cells: possible methods to derive safe, clinical-grade human induced pluripotent stem cells.
    Augustyniak J; Zychowicz M; Podobinska M; Barta T; Buzanska L
    Acta Neurobiol Exp (Wars); 2014; 74(4):373-82. PubMed ID: 25576968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of iPSCs Using Sendai Virus Vectors.
    Aoki H
    Methods Mol Biol; 2024; 2794():121-140. PubMed ID: 38630225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition.
    Zhu Q; Wang F; Gao D; Gao J; Li G; Jiao D; Zhu G; Xu K; Guo J; Chen T; Cao S; Zhi M; Zhang J; Wang Y; Zhang X; Zhang D; Yao Y; Song J; Wei HJ; Han J
    Cell Prolif; 2023 Nov; 56(11):e13487. PubMed ID: 37190930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human pluripotent stem cells: derivation and applications.
    Bar S; Benvenisty N
    Nat Rev Mol Cell Biol; 2020 Nov; ():. PubMed ID: 33154591
    [No Abstract]   [Full Text] [Related]  

  • 9. High-Throughput and Cost-Effective Characterization of Induced Pluripotent Stem Cells.
    D'Antonio M; Woodruff G; Nathanson JL; D'Antonio-Chronowska A; Arias A; Matsui H; Williams R; Herrera C; Reyna SM; Yeo GW; Goldstein LSB; Panopoulos AD; Frazer KA
    Stem Cell Reports; 2017 Apr; 8(4):1101-1111. PubMed ID: 28410643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular barriers to direct cardiac reprogramming.
    Vaseghi H; Liu J; Qian L
    Protein Cell; 2017 Oct; 8(10):724-734. PubMed ID: 28389873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency.
    Lee JH; Laronde S; Collins TJ; Shapovalova Z; Tanasijevic B; McNicol JD; Fiebig-Comyn A; Benoit YD; Lee JB; Mitchell RR; Bhatia M
    Cell Rep; 2017 Apr; 19(1):20-35. PubMed ID: 28380358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell fate conversion: a chromatin remodeling checkpoint revealed.
    Zaret KS
    Cell Res; 2017 May; 27(5):598-599. PubMed ID: 28361895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of iPS cell generation and beyond.
    Kaji K
    Keio J Med; 2017; 66(1):14. PubMed ID: 28356547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced pluripotent stem cells reprogramming: Epigenetics and applications in the regenerative medicine.
    Gomes KM; Costa IC; Santos JF; Dourado PM; Forni MF; Ferreira JC
    Rev Assoc Med Bras (1992); 2017 Feb; 63(2):180-189. PubMed ID: 28355380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIRT2 and glycolytic enzyme acetylation in pluripotent stem cells.
    Liu TM; Shyh-Chang N
    Nat Cell Biol; 2017 Apr; 19(5):412-414. PubMed ID: 28446816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic evaluation of cellular reprogramming processes exploiting a novel R-tool: eegc.
    Zhou X; Meng G; Nardini C; Mei H
    Bioinformatics; 2017 Aug; 33(16):2532-2538. PubMed ID: 28398503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promyelocytic Leukemia Protein Is an Essential Regulator of Stem Cell Pluripotency and Somatic Cell Reprogramming.
    Hadjimichael C; Chanoumidou K; Nikolaou C; Klonizakis A; Theodosi GI; Makatounakis T; Papamatheakis J; Kretsovali A
    Stem Cell Reports; 2017 May; 8(5):1366-1378. PubMed ID: 28392218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of single human embryonic stem cells and their pairs: a quantitative analysis.
    Wadkin LE; Elliot LF; Neganova I; Parker NG; Chichagova V; Swan G; Laude A; Lako M; Shukurov A
    Sci Rep; 2017 Apr; 7(1):570. PubMed ID: 28373677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of Human-Induced Pluripotent Stem Cells in Chemically Defined Medium.
    Chen G; Rao M
    Methods Mol Biol; 2017; 1590():131-137. PubMed ID: 28353266
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.