These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 28353268)
21. Vitrification for cryopreservation of 2D and 3D stem cells culture using high concentration of cryoprotective agents. Jeong YH; Kim U; Lee SG; Ryu B; Kim J; Igor A; Kim JS; Jung CR; Park JH; Kim CY BMC Biotechnol; 2020 Aug; 20(1):45. PubMed ID: 32843026 [TBL] [Abstract][Full Text] [Related]
22. A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Mollamohammadi S; Taei A; Pakzad M; Totonchi M; Seifinejad A; Masoudi N; Baharvand H Hum Reprod; 2009 Oct; 24(10):2468-76. PubMed ID: 19602515 [TBL] [Abstract][Full Text] [Related]
23. An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells. Meng G; Poon A; Liu S; Rancourt DE Methods Mol Biol; 2016; 1516():47-56. PubMed ID: 27032942 [TBL] [Abstract][Full Text] [Related]
24. The suspension culture of undifferentiated human pluripotent stem cells using spinner flasks. Chen VC; Couture LA Methods Mol Biol; 2015; 1283():13-21. PubMed ID: 25537838 [TBL] [Abstract][Full Text] [Related]
25. Efficient cryopreservation of human pluripotent stem cells by surface-based vitrification. Neubauer JC; Beier AF; Geijsen N; Zimmermann H Methods Mol Biol; 2015; 1257():321-8. PubMed ID: 25428013 [TBL] [Abstract][Full Text] [Related]
26. Optimization of slow cooling cryopreservation for human pluripotent stem cells. Miyazaki T; Nakatsuji N; Suemori H Genesis; 2014 Jan; 52(1):49-55. PubMed ID: 24254533 [TBL] [Abstract][Full Text] [Related]
27. Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity. Karimi-Busheri F; Rasouli-Nia A; Weinfeld M Adv Exp Med Biol; 2016; 951():1-12. PubMed ID: 27837550 [TBL] [Abstract][Full Text] [Related]
28. A chemically-defined plastic scaffold for the xeno-free production of human pluripotent stem cells. Shimizu E; Iguchi H; Le MNT; Nakamura Y; Kobayashi D; Arai Y; Takakura K; Benno S; Yoshida N; Tsukahara M; Haneda S; Hasegawa K Sci Rep; 2022 Feb; 12(1):2516. PubMed ID: 35169157 [TBL] [Abstract][Full Text] [Related]
29. Isolation, Cryopreservation, and Characterization of iPSC-Derived Megakaryocytes. Pogozhykh D; Blasczyk R; Figueiredo C Methods Mol Biol; 2021; 2180():539-554. PubMed ID: 32797433 [TBL] [Abstract][Full Text] [Related]
30. Cryopreservation of human induced pluripotent stem cells by using a new CryoLogic vitrification method. Zhang Y; Liu H; Liu Z; Long P; Zhao X; Li Q; Huang Y; Ma Y Cryobiology; 2021 Feb; 98():210-214. PubMed ID: 33147488 [TBL] [Abstract][Full Text] [Related]
31. Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical Applications. Yong KW; Choi JR; Wan Safwani WK Adv Exp Med Biol; 2016; 951():99-110. PubMed ID: 27837557 [TBL] [Abstract][Full Text] [Related]
32. Cryopreservation of Endothelial Cells in Various Cryoprotective Agents and Media - Vitrification versus Slow Freezing Methods. von Bomhard A; Elsässer A; Ritschl LM; Schwarz S; Rotter N PLoS One; 2016; 11(2):e0149660. PubMed ID: 26890410 [TBL] [Abstract][Full Text] [Related]
33. Chemically-Defined, Xeno-Free, Scalable Production of hPSC-Derived Definitive Endoderm Aggregates with Multi-Lineage Differentiation Potential. Sahabian A; Sgodda M; Naujok O; Dettmer R; Dahlmann J; Manstein F; Cantz T; Zweigerdt R; Martin U; Olmer R Cells; 2019 Dec; 8(12):. PubMed ID: 31817235 [TBL] [Abstract][Full Text] [Related]
34. Cardiomyocyte Differentiation from Human Embryonic Stem Cells. Mazzotta S; Lynch AT; Hoppler S Methods Mol Biol; 2018; 1816():67-78. PubMed ID: 29987811 [TBL] [Abstract][Full Text] [Related]
35. Cryopreservation of cartilage cell and tissue for biobanking. Cetinkaya G; Arat S Cryobiology; 2011 Dec; 63(3):292-7. PubMed ID: 22020192 [TBL] [Abstract][Full Text] [Related]
36. Magnetic heating of nanoparticles as a scalable cryopreservation technology for human induced pluripotent stem cells. Ito A; Yoshioka K; Masumoto S; Sato K; Hatae Y; Nakai T; Yamazaki T; Takahashi M; Tanoue S; Horie M Sci Rep; 2020 Aug; 10(1):13605. PubMed ID: 32788637 [TBL] [Abstract][Full Text] [Related]
37. Culturing and Cryobanking Human Neural Stem Cells. Crook JM; Tomaskovic-Crook E Methods Mol Biol; 2017; 1590():199-206. PubMed ID: 28353272 [TBL] [Abstract][Full Text] [Related]
38. Cell freezing protocol suitable for ATAC-Seq on motor neurons derived from human induced pluripotent stem cells. Milani P; Escalante-Chong R; Shelley BC; Patel-Murray NL; Xin X; Adam M; Mandefro B; Sareen D; Svendsen CN; Fraenkel E Sci Rep; 2016 May; 6():25474. PubMed ID: 27146274 [TBL] [Abstract][Full Text] [Related]
39. A Tool for Accurate Stoichiometric Composition of Cryopreservative Media for Fetal and Induced Pluripotent Stem Cell-Derived Human Neural Stem Cells. Niles WD; Snyder EY Curr Protoc; 2021 May; 1(5):e123. PubMed ID: 33950578 [TBL] [Abstract][Full Text] [Related]
40. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field. Nishiyama Y; Iwanami A; Kohyama J; Itakura G; Kawabata S; Sugai K; Nishimura S; Kashiwagi R; Yasutake K; Isoda M; Matsumoto M; Nakamura M; Okano H Neurosci Res; 2016 Jun; 107():20-9. PubMed ID: 26804710 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]