These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28353280)

  • 1. LRRK2 and Autophagy.
    Manzoni C; Lewis PA
    Adv Neurobiol; 2017; 14():89-105. PubMed ID: 28353280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson's disease.
    Cookson MR
    Biochem Soc Trans; 2016 Dec; 44(6):1603-1610. PubMed ID: 27913668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Upshot of LRRK2 Inhibition to Parkinson's Disease Paradigm.
    Esteves AR; G-Fernandes M; Santos D; Januário C; Cardoso SM
    Mol Neurobiol; 2015 Dec; 52(3):1804-1820. PubMed ID: 25394383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The LRRK2-macroautophagy axis and its relevance to Parkinson's disease.
    Manzoni C
    Biochem Soc Trans; 2017 Feb; 45(1):155-162. PubMed ID: 28202669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1.
    Manzoni C; Mamais A; Roosen DA; Dihanich S; Soutar MP; Plun-Favreau H; Bandopadhyay R; Hardy J; Tooze SA; Cookson MR; Lewis PA
    Sci Rep; 2016 Oct; 6():35106. PubMed ID: 27731364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy.
    Park S; Han S; Choi I; Kim B; Park SP; Joe EH; Suh YH
    PLoS One; 2016; 11(9):e0163029. PubMed ID: 27631370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of LRRK2 in Intracellular Organelle Dynamics.
    Boecker CA
    J Mol Biol; 2023 Jun; 435(12):167998. PubMed ID: 36764357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway.
    Albanese F; Domenicale C; Volta M; Morari M
    Biochem Soc Trans; 2022 Feb; 50(1):621-632. PubMed ID: 35225340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysosomal Pathogenesis of Parkinson's Disease: Insights From LRRK2 and GBA1 Rodent Models.
    Volta M
    Neurotherapeutics; 2023 Jan; 20(1):127-139. PubMed ID: 36085537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LRRK2 and the Endolysosomal System in Parkinson's Disease.
    Erb ML; Moore DJ
    J Parkinsons Dis; 2020; 10(4):1271-1291. PubMed ID: 33044192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G2019S LRRK2 mutant fibroblasts from Parkinson's disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy.
    Yakhine-Diop SM; Bravo-San Pedro JM; Gómez-Sánchez R; Pizarro-Estrella E; Rodríguez-Arribas M; Climent V; Aiastui A; López de Munain A; Fuentes JM; González-Polo RA
    Toxicology; 2014 Oct; 324():1-9. PubMed ID: 25017139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same.
    Berwick DC; Heaton GR; Azeggagh S; Harvey K
    Mol Neurodegener; 2019 Dec; 14(1):49. PubMed ID: 31864390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LRRK2 and Proteostasis in Parkinson's Disease.
    Pérez-Carrión MD; Posadas I; Solera J; Ceña V
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperactive LRRK2 kinase impairs the trafficking of axonal autophagosomes.
    Boecker CA; Holzbaur ELF
    Autophagy; 2021 Aug; 17(8):2043-2045. PubMed ID: 34110246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of LRRK2 kinase activity stimulates macroautophagy.
    Manzoni C; Mamais A; Dihanich S; Abeti R; Soutar MPM; Plun-Favreau H; Giunti P; Tooze SA; Bandopadhyay R; Lewis PA
    Biochim Biophys Acta; 2013 Dec; 1833(12):2900-2910. PubMed ID: 23916833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The V-ATPase-ATG16L1 axis recruits LRRK2 to facilitate the lysosomal stress response.
    Eguchi T; Sakurai M; Wang Y; Saito C; Yoshii G; Wileman T; Mizushima N; Kuwahara T; Iwatsubo T
    J Cell Biol; 2024 Mar; 223(3):. PubMed ID: 38227290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation.
    Manzoni C; Mamais A; Dihanich S; McGoldrick P; Devine MJ; Zerle J; Kara E; Taanman JW; Healy DG; Marti-Masso JF; Schapira AH; Plun-Favreau H; Tooze S; Hardy J; Bandopadhyay R; Lewis PA
    Biochem Biophys Res Commun; 2013 Nov; 441(4):862-6. PubMed ID: 24211199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LRRK2 along the Golgi and lysosome connection: a jamming situation.
    Piccoli G; Volta M
    Biochem Soc Trans; 2021 Nov; 49(5):2063-2072. PubMed ID: 34495322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LRRK2 and membrane trafficking: nexus of Parkinson's disease.
    Hur EM; Jang EH; Jeong GR; Lee BD
    BMB Rep; 2019 Sep; 52(9):533-539. PubMed ID: 31383252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRRK2 and idiopathic Parkinson's disease.
    Rocha EM; Keeney MT; Di Maio R; De Miranda BR; Greenamyre JT
    Trends Neurosci; 2022 Mar; 45(3):224-236. PubMed ID: 34991886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.