These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28353683)

  • 1. Model-Based Estimation of Ankle Joint Stiffness.
    Misgeld BJ; Zhang T; Lüken MJ; Leonhardt S
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28353683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observer-Based Human Knee Stiffness Estimation.
    Misgeld BJE; Luken M; Riener R; Leonhardt S
    IEEE Trans Biomed Eng; 2017 May; 64(5):1033-1044. PubMed ID: 27392340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between passive ankle plantar flexion joint torque and gastrocnemius muscle and achilles tendon stiffness: implications for flexibility.
    Kawakami Y; Kanehisa H; Fukunaga T
    J Orthop Sports Phys Ther; 2008 May; 38(5):269-76. PubMed ID: 18448880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-varying identification of ankle dynamic joint stiffness during movement with constant muscle activation.
    Guarin DL; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6740-3. PubMed ID: 26737840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Neural Network Estimation of Ankle Torques From Electromyography and Accelerometry.
    Siu HC; Sloboda J; McKindles RJ; Stirling LA
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1624-1633. PubMed ID: 34388093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of muscle short-range stiffness to initial changes in joint kinetics and kinematics during perturbations to standing balance: A simulation study.
    De Groote F; Allen JL; Ting LH
    J Biomech; 2017 Apr; 55():71-77. PubMed ID: 28259465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knee and ankle joint torque-angle relationships of multi-joint leg extension.
    Hahn D; Olvermann M; Richtberg J; Seiberl W; Schwirtz A
    J Biomech; 2011 Jul; 44(11):2059-65. PubMed ID: 21621211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated estimation of ankle muscle EMG envelopes and resulting plantar-dorsi flexion torque from 64 garment-embedded electrodes uniformly distributed around the human leg.
    Simonetti D; Koopman B; Sartori M
    J Electromyogr Kinesiol; 2022 Dec; 67():102701. PubMed ID: 36096035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of quiet human stance: computer simulations of a triple inverted pendulum model.
    Günther M; Wagner H
    Comput Methods Biomech Biomed Engin; 2016; 19(8):819-34. PubMed ID: 26214594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower-Limb Joint Torque Prediction Using LSTM Neural Networks and Transfer Learning.
    Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():600-609. PubMed ID: 35239487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic analysis of ankle stiffness in subjects with and without flat foot.
    Sung PS
    Foot (Edinb); 2016 Mar; 26():58-63. PubMed ID: 26897736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments.
    Allen M; Zhong Q; Kirsch N; Dani A; Clark WW; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2365-2374. PubMed ID: 28885155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated spatial localization of ankle muscle sites and model-based estimation of joint torque post-stroke via a wearable sensorised leg garment.
    Simonetti D; Hendriks M; Herijgers J; Cuerdo Del Rio C; Koopman B; Keijsers N; Sartori M
    J Electromyogr Kinesiol; 2023 Oct; 72():102808. PubMed ID: 37573851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closing the Wearable Gap-Part II: Sensor Orientation and Placement for Foot and Ankle Joint Kinematic Measurements.
    Saucier D; Luczak T; Nguyen P; Davarzani S; Peranich P; Ball JE; Burch RF; Smith BK; Chander H; Knight A; Prabhu RK
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on a Calculation Model of Ankle-Joint-Torque-Based sEMG.
    Qiu X; Zhao H; Xu P; Li J
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of torque during passive and active ankle movements in patients with muscle hypertonia. A methodological study.
    Broberg C; Grimby G
    Scand J Rehabil Med Suppl; 1983; 9():108-17. PubMed ID: 6585932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Ankle Muscle Dynamics during the STS Process Based on Wearable Sensors.
    Liu K; Ji S; Liu Y; Gao C; Zhang S; Fu J; Dai L
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel protocol to evaluate ankle movements during reaching tasks using pediAnklebot.
    Martelli F; Palermo E; Rossi S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():326-331. PubMed ID: 28813840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A NARMAX method for the identification of time-varying joint stiffness.
    Guarin DL; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6518-21. PubMed ID: 23367422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.