These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 28355031)
1. Metabolic effects of using a variable impedance prosthetic knee. Williams MR; Herr H; D'Andrea S J Rehabil Res Dev; 2016; 53(6):1079-1088. PubMed ID: 28355031 [TBL] [Abstract][Full Text] [Related]
2. Impact on gait biomechanics of using an active variable impedance prosthetic knee. Williams MR; D'Andrea S; Herr HM J Neuroeng Rehabil; 2016 Jun; 13(1):54. PubMed ID: 27283318 [TBL] [Abstract][Full Text] [Related]
3. The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking. Koehler-McNicholas SR; Lipschutz RD; Gard SA J Rehabil Res Dev; 2016; 53(6):1089-1106. PubMed ID: 28355034 [TBL] [Abstract][Full Text] [Related]
4. The impact of added mass placement on metabolic and temporal-spatial characteristics of transfemoral prosthetic gait. Ikeda AJ; Hurst EJ; Simon AM; Finucane SB; Hoppe-Ludwig S; Hargrove LJ Gait Posture; 2022 Oct; 98():240-247. PubMed ID: 36195049 [TBL] [Abstract][Full Text] [Related]
5. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
6. Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study. De Pauw K; Serrien B; Baeyens JP; Cherelle P; De Bock S; Ghillebert J; Bailey SP; Lefeber D; Roelands B; Vanderborght B; Meeusen R Clin Biomech (Bristol); 2020 Jan; 71():59-67. PubMed ID: 31704536 [TBL] [Abstract][Full Text] [Related]
7. Factors associated with a risk of prosthetic knee buckling during walking in unilateral transfemoral amputees. Hisano G; Hashizume S; Kobayashi Y; Murai A; Kobayashi T; Nakashima M; Hobara H Gait Posture; 2020 Mar; 77():69-74. PubMed ID: 31999980 [TBL] [Abstract][Full Text] [Related]
8. Temporal Spatial and Metabolic Measures of Walking in Highly Functional Individuals With Lower Limb Amputations. Jarvis HL; Bennett AN; Twiste M; Phillip RD; Etherington J; Baker R Arch Phys Med Rehabil; 2017 Jul; 98(7):1389-1399. PubMed ID: 27865845 [TBL] [Abstract][Full Text] [Related]
9. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
10. Home-based treadmill training to improve gait performance in persons with a chronic transfemoral amputation. Darter BJ; Nielsen DH; Yack HJ; Janz KF Arch Phys Med Rehabil; 2013 Dec; 94(12):2440-2447. PubMed ID: 23954560 [TBL] [Abstract][Full Text] [Related]
11. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation. Okita Y; Yamasaki N; Nakamura T; Mita T; Kubo T; Mitsumoto A; Akune T Prosthet Orthot Int; 2019 Feb; 43(1):55-61. PubMed ID: 30051754 [TBL] [Abstract][Full Text] [Related]
12. Absent loading response knee flexion: The impact on gait kinetics and centre of mass motion in individuals with unilateral transfemoral amputation, and the effect of microprocessor controlled knee provision. Carse B; Hebenton J; Brady L; Davie-Smith F Clin Biomech (Bristol); 2023 Aug; 108():106061. PubMed ID: 37556922 [TBL] [Abstract][Full Text] [Related]
13. Carbohydrate and fat oxidation in persons with lower limb amputation during walking with different speeds. Gjovaag T; Mirtaheri P; Starholm IM Prosthet Orthot Int; 2018 Jun; 42(3):304-310. PubMed ID: 29119861 [TBL] [Abstract][Full Text] [Related]
14. Changes in lower extremity joint moments one-year following osseointegration in individuals with Transfemoral lower-limb amputation: A case series. Davis-Wilson HC; Christiansen CL; Gaffney BMM; Lev G; Enabulele E; Hoyt C; Stoneback JW Clin Biomech (Bristol); 2023 Apr; 104():105948. PubMed ID: 37043833 [TBL] [Abstract][Full Text] [Related]
15. Can a powered knee-ankle prosthesis improve weight-bearing symmetry during stand-to-sit transitions in individuals with above-knee amputations? Hunt GR; Hood S; Gabert L; Lenzi T J Neuroeng Rehabil; 2023 May; 20(1):58. PubMed ID: 37131231 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Walking Performance With a Bilateral Hip Exoskeleton Assistance in Individuals With Above-Knee Amputation. Livolsi C; Sanz-Morere CB; Pergolini A; Giffone A; Giovacchini F; Frioriksson P; Alexandersson A; Macchi C; Trigili E; Crea S; Vitiello N IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2553-2563. PubMed ID: 38980789 [TBL] [Abstract][Full Text] [Related]
17. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users. Pinhey SR; Murata H; Hisano G; Ichimura D; Hobara H; Major MJ J Biomech; 2022 Mar; 134():110984. PubMed ID: 35182901 [TBL] [Abstract][Full Text] [Related]
18. The influence of traumatic transfemoral amputation on metabolic cost across walking speeds. Russell Esposito E; Rábago CA; Wilken J Prosthet Orthot Int; 2018 Apr; 42(2):214-222. PubMed ID: 28655287 [TBL] [Abstract][Full Text] [Related]
19. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms. Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM Clin Biomech (Bristol); 2018 Jun; 55():65-72. PubMed ID: 29698851 [TBL] [Abstract][Full Text] [Related]
20. Distribution of joint work during walking on slopes among persons with transfemoral amputation. Bonnet X; Villa C; Loiret I; Lavaste F; Pillet H J Biomech; 2021 Dec; 129():110843. PubMed ID: 34773834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]