BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28355033)

  • 1. Transtibial amputee gait efficiency: Energy storage and return versus solid ankle cushioned heel prosthetic feet.
    Gardiner J; Bari AZ; Howard D; Kenney L
    J Rehabil Res Dev; 2016; 53(6):1133-1138. PubMed ID: 28355033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation.
    Houdijk H; Wezenberg D; Hak L; Cutti AG
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):76. PubMed ID: 30255807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
    Segal AD; Zelik KE; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Adamczyk PG; Collins SH; Kuo AD; Czerniecki JM
    Hum Mov Sci; 2012 Aug; 31(4):918-31. PubMed ID: 22100728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study.
    Mengelkoch LJ; Kahle JT; Highsmith MJ
    Prosthet Orthot Int; 2017 Oct; 41(5):484-491. PubMed ID: 27885098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet.
    Czerniecki JM; Gitter A; Munro C
    J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy costs & performance of transtibial amputees & non-amputees during walking & running.
    Mengelkoch LJ; Kahle JT; Highsmith MJ
    Int J Sports Med; 2014 Dec; 35(14):1223-8. PubMed ID: 25144429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prosthetic push-off power in trans-tibial amputee level ground walking: A systematic review.
    Müller R; Tronicke L; Abel R; Lechler K
    PLoS One; 2019; 14(11):e0225032. PubMed ID: 31743353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.
    Ventura JD; Klute GK; Neptune RR
    Gait Posture; 2011 Feb; 33(2):220-6. PubMed ID: 21145747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet.
    Prince F; Winter DA; Sjonnensen G; Powell C; Wheeldon RK
    J Rehabil Res Dev; 1998 Jun; 35(2):177-85. PubMed ID: 9651889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait patterns of transtibial amputee patients walking indoors barefoot.
    Han TR; Chung SG; Shin HI
    Am J Phys Med Rehabil; 2003 Feb; 82(2):96-100. PubMed ID: 12544754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental characterization of the moment-angle curve during level and slope locomotion of transtibial amputee: Which parameters can be extracted to quantify the adaptations of microprocessor prosthetic ankle?
    Davot J; Thomas-Pohl M; Villa C; Bonnet X; Lapeyre E; Bascou J; Pillet H
    Proc Inst Mech Eng H; 2021 Jul; 235(7):762-769. PubMed ID: 33784889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking.
    Gitter A; Czerniecki JM; DeGroot DM
    Am J Phys Med Rehabil; 1991 Jun; 70(3):142-8. PubMed ID: 2039616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the International Committee of the Red Cross foot with the solid ankle cushion heel foot during gait: a randomized double-blind study.
    Turcot K; Sagawa Y; Lacraz A; Lenoir J; Assal M; Armand S
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1490-7. PubMed ID: 23578592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does ankle power on the prosthetic side influence loading parameters on the sound side during level walking of persons with transfemoral amputation?
    Pröbsting E; Altenburg B; Bellmann M; Krug K; Schmalz T
    Prosthet Orthot Int; 2022 Aug; 46(4):306-313. PubMed ID: 35315835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z; Janura M; Cabell L; Elfmark M
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of four different categories of prosthetic feet during ramp ambulation in unilateral transtibial amputees.
    Agrawal V; Gailey RS; Gaunaurd IA; O'Toole C; Finnieston A; Tolchin R
    Prosthet Orthot Int; 2015 Oct; 39(5):380-9. PubMed ID: 24925671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.
    Schneider K; Hart T; Zernicke RF; Setoguchi Y; Oppenheim W
    J Biomech; 1993 Oct; 26(10):1191-204. PubMed ID: 8253824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-cost prosthetic feet for underserved populations: A comparison of gait analysis and mechanical stiffness.
    Banks BP; Frei JS; Spencer A; Renninger KD; Grover JK; Abbott K; Carlson BJ; Bruening DA
    Prosthet Orthot Int; 2023 Aug; 47(4):399-406. PubMed ID: 36701193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait.
    Zmitrewicz RJ; Neptune RR; Walden JG; Rogers WE; Bosker GW
    Arch Phys Med Rehabil; 2006 Oct; 87(10):1334-9. PubMed ID: 17023242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.