BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28355135)

  • 1. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.
    Roellig D; Tan-Cabugao J; Esaian S; Bronner ME
    Elife; 2017 Mar; 6():. PubMed ID: 28355135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell atlas of early chick development reveals gradual segregation of neural crest lineage from the neural plate border during neurulation.
    Williams RM; Lukoseviciute M; Sauka-Spengler T; Bronner ME
    Elife; 2022 Jan; 11():. PubMed ID: 35088714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border.
    Thiery AP; Buzzi AL; Hamrud E; Cheshire C; Luscombe NM; Briscoe J; Streit A
    Elife; 2023 Aug; 12():. PubMed ID: 37530410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate Specification of Neural Plate Border by Canonical Wnt Signaling and Grhl3 is Crucial for Neural Tube Closure.
    Kimura-Yoshida C; Mochida K; Ellwanger K; Niehrs C; Matsuo I
    EBioMedicine; 2015 Jun; 2(6):513-27. PubMed ID: 26288816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border.
    Thawani A; Maunsell HR; Zhang H; Ankamreddy H; Groves AK
    Development; 2023 Oct; 150(19):. PubMed ID: 37756587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pou5f1/Pou3f-dependent but SoxB-independent regulation of conserved enhancer N2 initiates Sox2 expression during epiblast to neural plate stages in vertebrates.
    Iwafuchi-Doi M; Yoshida Y; Onichtchouk D; Leichsenring M; Driever W; Takemoto T; Uchikawa M; Kamachi Y; Kondoh H
    Dev Biol; 2011 Apr; 352(2):354-66. PubMed ID: 21185279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ILF-3 is a regulator of the neural plate border marker Zic1 in chick embryos.
    Fishwick KJ; Kim E; Bronner ME
    Dev Dyn; 2012 Aug; 241(8):1325-32. PubMed ID: 22639388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The epigenetic modifier DNMT3A is necessary for proper otic placode formation.
    Roellig D; Bronner ME
    Dev Biol; 2016 Mar; 411(2):294-300. PubMed ID: 26826496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border.
    Schille C; Bayerlová M; Bleckmann A; Schambony A
    Development; 2016 Sep; 143(17):3182-94. PubMed ID: 27578181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specification of sensory placode progenitors: signals and transcription factor networks.
    Streit A
    Int J Dev Biol; 2018; 62(1-2-3):195-205. PubMed ID: 29616729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and function of transcription factor cMyb during cranial neural crest development.
    Betancur P; Simões-Costa M; Sauka-Spengler T; Bronner ME
    Mech Dev; 2014 May; 132():38-43. PubMed ID: 24509349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. B1 and B2 Sox gene expression during neural plate development in chicken and mouse embryos: universal versus species-dependent features.
    Uchikawa M; Yoshida M; Iwafuchi-Doi M; Matsuda K; Ishida Y; Takemoto T; Kondoh H
    Dev Growth Differ; 2011 Aug; 53(6):761-71. PubMed ID: 21762129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube.
    Kerosuo L; Bronner ME
    Mol Biol Cell; 2014 Feb; 25(3):347-55. PubMed ID: 24307680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wnt-regulated temporal control of BMP exposure directs the choice between neural plate border and epidermal fate.
    Patthey C; Edlund T; Gunhaga L
    Development; 2009 Jan; 136(1):73-83. PubMed ID: 19060333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple roles of Sox2, an HMG-box transcription factor in avian neural crest development.
    Wakamatsu Y; Endo Y; Osumi N; Weston JA
    Dev Dyn; 2004 Jan; 229(1):74-86. PubMed ID: 14699579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early embryonic specification of vertebrate cranial placodes.
    Schlosser G
    Wiley Interdiscip Rev Dev Biol; 2014; 3(5):349-63. PubMed ID: 25124756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specification of the neural crest occurs during gastrulation and requires Pax7.
    Basch ML; Bronner-Fraser M; García-Castro MI
    Nature; 2006 May; 441(7090):218-22. PubMed ID: 16688176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells.
    Light W; Vernon AE; Lasorella A; Iavarone A; LaBonne C
    Development; 2005 Apr; 132(8):1831-41. PubMed ID: 15772131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pax7 is regulated by cMyb during early neural crest development through a novel enhancer.
    Vadasz S; Marquez J; Tulloch M; Shylo NA; García-Castro MI
    Development; 2013 Sep; 140(17):3691-702. PubMed ID: 23942518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.