BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28355147)

  • 1. GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses.
    Markovic M; Karnal H; Graimann B; Farina D; Dosen S
    J Neural Eng; 2017 Jun; 14(3):036007. PubMed ID: 28355147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A compact system for simultaneous stimulation and recording for closed-loop myoelectric control.
    Garenfeld MA; Jorgovanovic N; Ilic V; Strbac M; Isakovic M; Dideriksen JL; Dosen S
    J Neuroeng Rehabil; 2021 May; 18(1):87. PubMed ID: 34034762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses.
    Dosen S; Markovic M; Strbac M; Belic M; Kojic V; Bijelic G; Keller T; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):183-195. PubMed ID: 27071179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrotactile EMG feedback improves the control of prosthesis grasping force.
    Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D
    J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.
    Markovic M; Schweisfurth MA; Engels LF; Bentz T; Wüstefeld D; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Mar; 15(1):28. PubMed ID: 29580245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.
    Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.
    De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D
    Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of objective functions on control policies in closed-loop control of grasping force with a myoelectric prosthesis.
    Mamidanna P; Dideriksen JL; Dosen S
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34479219
    [No Abstract]   [Full Text] [Related]  

  • 10. Closed-Loop Control of a Multifunctional Myoelectric Prosthesis With Full-State Anatomically Congruent Electrotactile Feedback.
    Garenfeld MA; Strbac M; Jorgovanovic N; Dideriksen JL; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2090-2100. PubMed ID: 37058389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis.
    Wilke MA; Niethammer C; Meyer B; Farina D; Dosen S
    J Neuroeng Rehabil; 2019 Dec; 16(1):155. PubMed ID: 31823792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immersive augmented reality system for the training of pattern classification control with a myoelectric prosthesis.
    Boschmann A; Neuhaus D; Vogt S; Kaltschmidt C; Platzner M; Dosen S
    J Neuroeng Rehabil; 2021 Feb; 18(1):25. PubMed ID: 33541376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses.
    Clites TR; Carty MJ; Srinivasan S; Zorzos AN; Herr HM
    J Neural Eng; 2017 Jun; 14(3):036002. PubMed ID: 28211795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system.
    Antfolk C; Balkenius C; Lundborg G; Rosén B; Sebelius F
    Biomed Eng Online; 2010 Sep; 9():50. PubMed ID: 20840758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand.
    Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R
    PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring and monitoring skill learning in closed-loop myoelectric hand prostheses using speed-accuracy tradeoffs.
    Mamidanna P; Gholinezhad S; Farina D; Dideriksen JL; Dosen S
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38417146
    [No Abstract]   [Full Text] [Related]  

  • 18. Electrotactile Feedback Improves Grip Force Control and Enables Object Stiffness Recognition While Using a Myoelectric Hand.
    Chai G; Wang H; Li G; Sheng X; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1310-1320. PubMed ID: 35533165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping.
    Dosen S; Markovic M; Wille N; Henkel M; Koppe M; Ninu A; Frömmel C; Farina D
    Exp Brain Res; 2015 Jun; 233(6):1855-65. PubMed ID: 25804864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplitude versus spatially modulated electrotactile feedback for myoelectric control of two degrees of freedom.
    Garenfeld MA; Mortensen CK; Strbac M; Dideriksen JL; Dosen S
    J Neural Eng; 2020 Aug; 17(4):046034. PubMed ID: 32650320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.