BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28355147)

  • 21. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?
    Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Sensory Feedback Approach to Facilitate Both Predictive and Corrective Control of Grasping Force in Myoelectric Prostheses.
    Gasparic F; Jorgovanovic N; Hofer C; Russold MF; Koppe M; Stanisic D; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4492-4503. PubMed ID: 37930904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multichannel electrotactile feedback for simultaneous and proportional myoelectric control.
    Patel GK; Dosen S; Castellini C; Farina D
    J Neural Eng; 2016 Oct; 13(5):056015. PubMed ID: 27618968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback.
    Tchimino J; Markovic M; Dideriksen JL; Dosen S
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34082406
    [No Abstract]   [Full Text] [Related]  

  • 25. HapPro: A Wearable Haptic Device for Proprioceptive Feedback.
    Rossi M; Bianchi M; Battaglia E; Catalano MG; Bicchi A
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):138-149. PubMed ID: 29993527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed.
    Raveh E; Portnoy S; Friedman J
    Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.
    Strbac M; Isakovic M; Belic M; Popovic I; Simanic I; Farina D; Keller T; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2133-2145. PubMed ID: 28600254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid force-velocity sliding mode control of a prosthetic hand.
    Engeberg ED; Meek SG; Minor MA
    IEEE Trans Biomed Eng; 2008 May; 55(5):1572-81. PubMed ID: 18440903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.
    Dosen S; Markovic M; Hartmann C; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):267-76. PubMed ID: 25420268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated and flexible multichannel interface for electrotactile stimulation.
    Štrbac M; Belić M; Isaković M; Kojić V; Bijelić G; Popović I; Radotić M; Došen S; Marković M; Farina D; Keller T
    J Neural Eng; 2016 Aug; 13(4):046014. PubMed ID: 27296902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating speed-accuracy trade-offs to evaluate and understand closed-loop prosthesis interfaces.
    Mamidanna P; Dideriksen JL; Dosen S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35977526
    [No Abstract]   [Full Text] [Related]  

  • 32. Stereovision and augmented reality for closed-loop control of grasping in hand prostheses.
    Markovic M; Dosen S; Cipriani C; Popovic D; Farina D
    J Neural Eng; 2014 Aug; 11(4):046001. PubMed ID: 24891493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrotactile Feedback with Spatial and Mixed Coding for Object Identification and Closed-loop Control of Grasping Force in Myoelectric Prostheses.
    Chai G; Briand J; Su S; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1805-1808. PubMed ID: 31946247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study.
    Maruishi M; Tanaka Y; Muranaka H; Tsuji T; Ozawa Y; Imaizumi S; Miyatani M; Kawahara J
    Neuroimage; 2004 Apr; 21(4):1604-11. PubMed ID: 15050584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees.
    Al-Timemy AH; Khushaba RN; Bugmann G; Escudero J
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):650-61. PubMed ID: 26111399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing silicone digit extensions as a way to suppress natural sensation to evaluate supplementary tactile feedback.
    Engels LF; Cappello L; Fischer A; Cipriani C
    PLoS One; 2021; 16(9):e0256753. PubMed ID: 34469470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving internal model strength and performance of prosthetic hands using augmented feedback.
    Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW
    J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Grasp specific and user friendly interface design for myoelectric hand prostheses.
    Mohammadi A; Lavranos J; Howe R; Choong P; Oetomo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1621-1626. PubMed ID: 28814052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.