These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28355537)

  • 1. Ephemeral Protein Binding to DNA Shapes Stable Nuclear Bodies and Chromatin Domains.
    Brackley CA; Liebchen B; Michieletto D; Mouvet F; Cook PR; Marenduzzo D
    Biophys J; 2017 Mar; 112(6):1085-1093. PubMed ID: 28355537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging-induced microphase separation: photobleaching experiments, chromatin domains and the need for active reactions.
    Brackley CA; Marenduzzo D
    Brief Funct Genomics; 2020 Mar; 19(2):111-118. PubMed ID: 31971237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of DNA with multi-Cys2His2 zinc finger proteins.
    Liu L; Heermann DW
    J Phys Condens Matter; 2015 Feb; 27(6):064107. PubMed ID: 25563438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction.
    Johnson J; Brackley CA; Cook PR; Marenduzzo D
    J Phys Condens Matter; 2015 Feb; 27(6):064119. PubMed ID: 25563801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-dependent folding and stability of nuclear hormone receptor DNA-binding domains.
    Low LY; Hernández H; Robinson CV; O'Brien R; Grossmann JG; Ladbury JE; Luisi B
    J Mol Biol; 2002 May; 319(1):87-106. PubMed ID: 12051939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic as well as stable protein interactions contribute to genome function and maintenance.
    Hemmerich P; Schmiedeberg L; Diekmann S
    Chromosome Res; 2011 Jan; 19(1):131-51. PubMed ID: 21046224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LAP2alpha and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly.
    Dechat T; Gajewski A; Korbei B; Gerlich D; Daigle N; Haraguchi T; Furukawa K; Ellenberg J; Foisner R
    J Cell Sci; 2004 Dec; 117(Pt 25):6117-28. PubMed ID: 15546916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Chromatin Subcompartments by Phase Separation.
    Erdel F; Rippe K
    Biophys J; 2018 May; 114(10):2262-2270. PubMed ID: 29628210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation.
    Dame RT; Noom MC; Wuite GJ
    Nature; 2006 Nov; 444(7117):387-90. PubMed ID: 17108966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization.
    Brackley CA; Taylor S; Papantonis A; Cook PR; Marenduzzo D
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):E3605-11. PubMed ID: 24003126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions.
    Bryan LC; Weilandt DR; Bachmann AL; Kilic S; Lechner CC; Odermatt PD; Fantner GE; Georgeon S; Hantschel O; Hatzimanikatis V; Fierz B
    Nucleic Acids Res; 2017 Oct; 45(18):10504-10517. PubMed ID: 28985346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation.
    Polach KJ; Widom J
    J Mol Biol; 1995 Nov; 254(2):130-49. PubMed ID: 7490738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins.
    Phair RD; Scaffidi P; Elbi C; Vecerová J; Dey A; Ozato K; Brown DT; Hager G; Bustin M; Misteli T
    Mol Cell Biol; 2004 Jul; 24(14):6393-402. PubMed ID: 15226439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Salt Valency in the Switch of H-NS Proteins between DNA-Bridging and DNA-Stiffening Modes.
    Joyeux M
    Biophys J; 2018 May; 114(10):2317-2325. PubMed ID: 29576193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin studies by DNA-protein cross-linking.
    Pruss D; Bavykin SG
    Methods; 1997 May; 12(1):36-47. PubMed ID: 9169193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-DNA binding in high-resolution.
    Mahony S; Pugh BF
    Crit Rev Biochem Mol Biol; 2015; 50(4):269-83. PubMed ID: 26038153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin.
    Chalkiadaki A; Talianidis I
    Mol Cell Biol; 2005 Jun; 25(12):5095-105. PubMed ID: 15923626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations.
    Korolev N; Vorontsova OV; Nordenskiöld L
    Prog Biophys Mol Biol; 2007; 95(1-3):23-49. PubMed ID: 17291569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.
    Sauvé S; Tremblay L; Lavigne P
    J Mol Biol; 2004 Sep; 342(3):813-32. PubMed ID: 15342239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct membrane protein-DNA interactions required early in nuclear envelope assembly.
    Ulbert S; Platani M; Boue S; Mattaj IW
    J Cell Biol; 2006 May; 173(4):469-76. PubMed ID: 16717124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.