BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2835584)

  • 1. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400.
    Schmid K; Ebner R; Altenbuchner J; Schmitt R; Lengeler JW
    Mol Microbiol; 1988 Jan; 2(1):1-8. PubMed ID: 2835584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase.
    Titgemeyer F; Jahreis K; Ebner R; Lengeler JW
    Mol Gen Genet; 1996 Feb; 250(2):197-206. PubMed ID: 8628219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon.
    Reid SJ; Rafudeen MS; Leat NG
    Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1461-1472. PubMed ID: 10411273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12.
    Sprenger GA; Lengeler JW
    J Gen Microbiol; 1988 Jun; 134(6):1635-44. PubMed ID: 3065452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence.
    Bogs J; Geider K
    J Bacteriol; 2000 Oct; 182(19):5351-8. PubMed ID: 10986236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the major promoter for the plasmid-encoded sucrose genes scrY, scrA, and scrB.
    Cowan PJ; Nagesha H; Leonard L; Howard JL; Pittard AJ
    J Bacteriol; 1991 Dec; 173(23):7464-70. PubMed ID: 1938944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon.
    Wang B; Kuramitsu HK
    J Bacteriol; 2003 Oct; 185(19):5791-9. PubMed ID: 13129950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12.
    Schmid K; Schupfner M; Schmitt R
    J Bacteriol; 1982 Jul; 151(1):68-76. PubMed ID: 6211435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system.
    Sato Y; Poy F; Jacobson GR; Kuramitsu HK
    J Bacteriol; 1989 Jan; 171(1):263-71. PubMed ID: 2536656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria.
    Jahreis K; Lengeler JW
    Mol Microbiol; 1993 Jul; 9(1):195-209. PubMed ID: 8412665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion analysis of sucrose metabolic genes from a Salmonella plasmid cloned in Escherichia coli K12.
    Hardesty C; Colón G; Ferran C; DiRienzo JM
    Plasmid; 1987 Sep; 18(2):142-55. PubMed ID: 2829252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR.
    Gering M; Brückner R
    J Bacteriol; 1996 Jan; 178(2):462-9. PubMed ID: 8550467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification.
    Wang J; Gilles ED; Lengeler JW; Jahreis K
    J Biotechnol; 2001 Dec; 92(2):133-58. PubMed ID: 11640984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmid-mediated sucrose metabolism in Escherichia coli: characterization of scrY, the structural gene for a phosphoenolpyruvate-dependent sucrose phosphotransferase system outer membrane porin.
    Hardesty C; Ferran C; DiRienzo JM
    J Bacteriol; 1991 Jan; 173(2):449-56. PubMed ID: 1846143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of scrA and scrB from Streptococcus sobrinus 6715.
    Chen YY; LeBlanc DJ
    Infect Immun; 1992 Sep; 60(9):3739-46. PubMed ID: 1500184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and characterization of scrB, the structural gene for the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system sucrose-6-phosphate hydrolase.
    Lunsford RD; Macrina FL
    J Bacteriol; 1986 May; 166(2):426-34. PubMed ID: 3009399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA sequence of the gene scrA encoding the sucrose transport protein EnzymeII(Scr) of the phosphotransferase system from enteric bacteria: homology of the EnzymeII(Scr) and EnzymeII(Bgl) proteins.
    Ebner R; Lengeler JW
    Mol Microbiol; 1988 Jan; 2(1):9-17. PubMed ID: 3285123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132.
    Bockmann J; Heuel H; Lengeler JW
    Mol Gen Genet; 1992 Oct; 235(1):22-32. PubMed ID: 1435727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse Horizontally-Acquired Gene Clusters Confer Sucrose Utilization to Different Lineages of the Marine Pathogen
    Abushattal S; Vences A; Barca AV; Osorio CR
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33105683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation, characterization and sequence analysis of the scrK gene encoding fructokinase of Streptococcus mutans.
    Sato Y; Yamamoto Y; Kizaki H; Kuramitsu HK
    J Gen Microbiol; 1993 May; 139(5):921-7. PubMed ID: 8336109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.