BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28355967)

  • 1. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: a cross-sectional study.
    Debaere S; Vanwanseele B; Delecluse C; Aerenhouts D; Hagman F; Jonkers I
    Sports Biomech; 2017 Nov; 16(4):452-462. PubMed ID: 28355967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From block clearance to sprint running: characteristics underlying an effective transition.
    Debaere S; Delecluse C; Aerenhouts D; Hagman F; Jonkers I
    J Sports Sci; 2013; 31(2):137-49. PubMed ID: 22974278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis I; Irwin G
    J Sports Sci; 2017 Aug; 35(16):1629-1635. PubMed ID: 27598715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters.
    Bezodis IN; Cowburn J; Brazil A; Richardson R; Wilson C; Exell TA; Irwin G
    Sports Biomech; 2020 Apr; 19(2):189-200. PubMed ID: 29768121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a Wide Stance on Block Start Performance in Sprint Running.
    Otsuka M; Kurihara T; Isaka T
    PLoS One; 2015; 10(11):e0142230. PubMed ID: 26544719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First and Second Step Characteristics of Amputee and Able-Bodied Sprinters.
    Strutzenberger G; Brazil A; Exell T; von Lieres Und Wilkau H; Davies JD; Willwacher S; Funken J; Müller R; Heinrich K; Schwameder H; Potthast W; Irwin G
    Int J Sports Physiol Perform; 2018 Aug; 13(7):874-881. PubMed ID: 29252086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of a reduced first step width on starting block and first stance power and impulses during an athletic sprint start.
    Sandamas P; Gutierrez-Farewik EM; Arndt A
    J Sports Sci; 2019 May; 37(9):1046-1054. PubMed ID: 30460879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of propulsion and body lift during the first two stances of sprint running: a simulation study.
    Debaere S; Delecluse C; Aerenhouts D; Hagman F; Jonkers I
    J Sports Sci; 2015; 33(19):2016-24. PubMed ID: 25798644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sprint Acceleration Mechanics in Masters Athletes.
    Pantoja PD; Saez DE Villarreal E; Brisswalter J; Peyré-Tartaruga LA; Morin JB
    Med Sci Sports Exerc; 2016 Dec; 48(12):2469-2476. PubMed ID: 27414690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters.
    Bezodis NE; Salo AI; Trewartha G
    Eur J Sport Sci; 2015; 15(2):118-24. PubMed ID: 24963548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sprint start kinematics during competition in elite and world-class male and female sprinters.
    Ciacci S; Merni F; Bartolomei S; Di Michele R
    J Sports Sci; 2017 Jul; 35(13):1270-1278. PubMed ID: 27540875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of step characteristics to sprint running performance in high-level male and female athletes.
    Debaere S; Jonkers I; Delecluse C
    J Strength Cond Res; 2013 Jan; 27(1):116-24. PubMed ID: 22395270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters.
    Douglas J; Pearson S; Ross A; McGuigan M
    J Sports Sci; 2020 Jan; 38(1):29-37. PubMed ID: 31631783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle power patterns in the mid-acceleration phase of sprinting.
    Johnson MD; Buckley JG
    J Sports Sci; 2001 Apr; 19(4):263-72. PubMed ID: 11311024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Biomechanics of the Track and Field Sprint Start: A Narrative Review.
    Bezodis NE; Willwacher S; Salo AIT
    Sports Med; 2019 Sep; 49(9):1345-1364. PubMed ID: 31209732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case studies.
    Bezodis NE; Salo AI; Trewartha G
    J Sports Sci; 2014; 32(8):738-46. PubMed ID: 24359568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hurdling step strategy on the kinematics of the block start.
    Rowley LJ; Churchill SM; Dunn M; Wheat J
    Sports Biomech; 2024 Jul; 23(7):846-859. PubMed ID: 33821749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.