These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28355967)

  • 21. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J
    Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joint kinetic determinants of starting block performance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis IN; Irwin G
    J Sports Sci; 2018 Jul; 36(14):1656-1662. PubMed ID: 29173043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationships between pelvic range of motion, step width and performance during an athletic sprint start.
    Sandamas P; Gutierrez-Farewik EM; Arndt A
    J Sports Sci; 2020 Oct; 38(19):2200-2207. PubMed ID: 32921248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes.
    Bezodis NE; North JS; Razavet JL
    J Sports Sci; 2017 Sep; 35(18):1-8. PubMed ID: 27700312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strength and performance asymmetry during maximal velocity sprint running.
    Exell T; Irwin G; Gittoes M; Kerwin D
    Scand J Med Sci Sports; 2017 Nov; 27(11):1273-1282. PubMed ID: 27671707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inertial measurement unit-based hip flexion test as an indicator of sprint performance.
    Nagahara R; Kameda M; Neville J; Morin JB
    J Sports Sci; 2020 Jan; 38(1):53-61. PubMed ID: 31623521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Traditional and ankle-specific vertical jumps as strength-power indicators for maximal sprint acceleration.
    Nagahara R; Naito H; Miyashiro K; Morin JB; Zushi K
    J Sports Med Phys Fitness; 2014 Dec; 54(6):691-9. PubMed ID: 24739258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.
    Charalambous L; Irwin G; Bezodis IN; Kerwin D
    J Sports Sci; 2012; 30(1):1-9. PubMed ID: 22098532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of muscle-tendon length on joint moment and power during sprint starts.
    Mero A; Kuitunen S; Harland M; Kyröläinen H; Komi PV
    J Sports Sci; 2006 Feb; 24(2):165-73. PubMed ID: 16368626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running.
    Otsuka M; Shim JK; Kurihara T; Yoshioka S; Nokata M; Isaka T
    J Appl Biomech; 2014 Jun; 30(3):390-400. PubMed ID: 24615252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional kinetic function of the lumbo-pelvic-hip complex during block start.
    Sado N; Yoshioka S; Fukashiro S
    PLoS One; 2020; 15(3):e0230145. PubMed ID: 32163481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of a Body-Weight Supporting Kite on Sprint Running Kinematics in Well-Trained Sprinters.
    Kratky S; Buchecker M; Pfusterschmied J; Szekely C; Müller E
    J Strength Cond Res; 2016 Jan; 30(1):102-8. PubMed ID: 26270692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Factors that differentiate acceleration ability in field sport athletes.
    Lockie RG; Murphy AJ; Knight TJ; Janse de Jonge XA
    J Strength Cond Res; 2011 Oct; 25(10):2704-14. PubMed ID: 21878822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D kinematic of bunched, medium and elongated sprint start.
    Slawinski J; Dumas R; Cheze L; Ontanon G; Miller C; Mazure-Bonnefoy A
    Int J Sports Med; 2012 Jul; 33(7):555-60. PubMed ID: 22499565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Considerations of force plate transitions on centre of pressure calculation for maximal velocity sprint running.
    Exell TA; Gittoes MJ; Irwin G; Kerwin DG
    Sports Biomech; 2012 Nov; 11(4):532-41. PubMed ID: 23259242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes.
    Lockie RG; Murphy AJ; Schultz AB; Knight TJ; Janse de Jonge XA
    J Strength Cond Res; 2012 Jun; 26(6):1539-50. PubMed ID: 21912294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validity of block start performance without arm forces or by kinematics-only methods.
    Otsuka M; Potthast W; Willwacher S; Goldmann JP; Kurihara T; Isaka T
    Sports Biomech; 2019 Jun; 18(3):229-244. PubMed ID: 30990124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anthropometry-driven block setting improves starting block performance in sprinters.
    Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C
    PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion.
    Rabita G; Dorel S; Slawinski J; Sàez-de-Villarreal E; Couturier A; Samozino P; Morin JB
    Scand J Med Sci Sports; 2015 Oct; 25(5):583-94. PubMed ID: 25640466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.