These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 28356366)

  • 1. Zebra finches have a light-dependent magnetic compass similar to migratory birds.
    Pinzon-Rodriguez A; Muheim R
    J Exp Biol; 2017 Apr; 220(Pt 7):1202-1209. PubMed ID: 28356366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarized light modulates light-dependent magnetic compass orientation in birds.
    Muheim R; Sjöberg S; Pinzon-Rodriguez A
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1654-9. PubMed ID: 26811473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception.
    Pinzon-Rodriguez A; Bensch S; Muheim R
    J R Soc Interface; 2018 Mar; 15(140):. PubMed ID: 29593090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor.
    Pinzon-Rodriguez A; Muheim R
    Sci Rep; 2021 Jun; 11(1):12683. PubMed ID: 34135416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.
    Lau JC; Rodgers CT; Hore PJ
    J R Soc Interface; 2012 Dec; 9(77):3329-37. PubMed ID: 22977104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
    Wiltschko R; Ahmad M; Nießner C; Gehring D; Wiltschko W
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27146685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
    Wiltschko R; Wiltschko W
    Biosensors (Basel); 2014 Sep; 4(3):221-42. PubMed ID: 25587420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetoreception: activation of avian cryptochrome 1a in various light conditions.
    Nießner C; Denzau S; Peichl L; Wiltschko W; Wiltschko R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Dec; 204(12):977-984. PubMed ID: 30350127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata.
    Keary N; Ruploh T; Voss J; Thalau P; Wiltschko R; Wiltschko W; Bischof HJ
    Front Zool; 2009 Oct; 6():25. PubMed ID: 19852792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation of birds in radiofrequency fields in the absence of the Earth's magnetic field: a possible test for the radical pair mechanism of magnetoreception.
    Luo J; Benjamin P; Gerhards L; Hogben HJ; Hore PJ
    J R Soc Interface; 2024 Aug; 21(217):20240133. PubMed ID: 39110232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know?
    Liedvogel M; Mouritsen H
    J R Soc Interface; 2010 Apr; 7 Suppl 2(Suppl 2):S147-62. PubMed ID: 19906675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field.
    Thalau P; Ritz T; Stapput K; Wiltschko R; Wiltschko W
    Naturwissenschaften; 2005 Feb; 92(2):86-90. PubMed ID: 15614508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor.
    Leberecht B; Kobylkov D; Karwinkel T; Döge S; Burnus L; Wong SY; Apte S; Haase K; Musielak I; Chetverikova R; Dautaj G; Bassetto M; Winklhofer M; Hore PJ; Mouritsen H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Jan; 208(1):97-106. PubMed ID: 35019998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night-migratory songbirds.
    Leberecht B; Wong SY; Satish B; Döge S; Hindman J; Venkatraman L; Apte S; Haase K; Musielak I; Dautaj G; Solov'yov IA; Winklhofer M; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301153120. PubMed ID: 37399422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptochrome expression in the eye of migratory birds depends on their migratory status.
    Fusani L; Bertolucci C; Frigato E; Foà A
    J Exp Biol; 2014 Mar; 217(Pt 6):918-23. PubMed ID: 24622895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.
    Wiltschko R; Gehring D; Denzau S; Nießner C; Wiltschko W
    J Exp Biol; 2014 Dec; 217(Pt 23):4225-8. PubMed ID: 25472973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Radical-Pair Mechanism of Magnetoreception.
    Hore PJ; Mouritsen H
    Annu Rev Biophys; 2016 Jul; 45():299-344. PubMed ID: 27216936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome.
    Nießner C; Winklhofer M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):499-507. PubMed ID: 28612234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration of magnetic and celestial compass cues in migratory birds--a review of cue-conflict experiments.
    Muheim R; Moore FR; Phillips JB
    J Exp Biol; 2006 Jan; 209(Pt 1):2-17. PubMed ID: 16354773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4.
    Günther A; Einwich A; Sjulstok E; Feederle R; Bolte P; Koch KW; Solov'yov IA; Mouritsen H
    Curr Biol; 2018 Jan; 28(2):211-223.e4. PubMed ID: 29307554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.