These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28356476)

  • 1. Transfer of dynamic motor skills acquired during isometric training to free motion.
    Melendez-Calderon A; Tan M; Bittmann MF; Burdet E; Patton JL
    J Neurophysiol; 2017 Jul; 118(1):219-233. PubMed ID: 28356476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal intralimb transfer of skilled isometric force production.
    Rajan VA; Hardwick RM; Celnik PA
    J Neurophysiol; 2019 Jul; 122(1):60-65. PubMed ID: 31042443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
    Sergio LE; Hamel-Pâquet C; Kalaska JF
    J Neurophysiol; 2005 Oct; 94(4):2353-78. PubMed ID: 15888522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human adaptation to interaction forces in visuo-motor coordination.
    Huang FC; Gillespie RB; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):390-7. PubMed ID: 17009499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movement therapy without moving - First results on isometric movement training for post-stroke rehabilitation of arm function.
    Melendez-Calderon A; Rodrigues E; Thielbar K; Patton JL
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():106-110. PubMed ID: 28813802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parietal area 5 activity does not reflect the differential time-course of motor output kinetics during arm-reaching and isometric-force tasks.
    Hamel-Pâquet C; Sergio LE; Kalaska JF
    J Neurophysiol; 2006 Jun; 95(6):3353-70. PubMed ID: 16481461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms.
    Wang J; Lei Y; Binder JR
    J Neurophysiol; 2015 Apr; 113(7):2302-8. PubMed ID: 25632082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalization of object manipulation skills learned without limb motion.
    Mah CD; Mussa-Ivaldi FA
    J Neurosci; 2003 Jun; 23(12):4821-5. PubMed ID: 12832503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion state-dependent motor learning based on explicit visual feedback is quickly recalled, but is less stable than adaptation to physical perturbations.
    Zhou W; Kruse EA; Brower R; North R; Joiner WM
    J Neurophysiol; 2022 Oct; 128(4):854-871. PubMed ID: 36043804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single limb performance following contralateral bimanual limb training.
    Burgess JK; Bareither R; Patton JL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):347-55. PubMed ID: 17894267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of human force control during a constrained arm motion using a force-actuated joystick.
    McIntyre J; Gurfinkel EV; Lipshits MI; Droulez J; Gurfinkel VS
    J Neurophysiol; 1995 Mar; 73(3):1201-22. PubMed ID: 7608766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance control is tuned to multiple directions of movement.
    Kadiallah A; Liaw G; Burdet E; Kawato M; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5358-61. PubMed ID: 19163928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance control complements incomplete internal models under complex external dynamics.
    Tomi N; Gouko M; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5354-7. PubMed ID: 19163927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.